Advertisement

Archives of Virology

, Volume 164, Issue 1, pp 249–254 | Cite as

Cucurbit aphid-borne yellows virus from melon plants in Brazil is an interspecific recombinant

  • Thiago Marques Costa
  • Rosana Blawid
  • Miguel A. Aranda
  • Débora Maria Sansini Freitas
  • Genira Pereira Andrade
  • Alice Kazuko Inoue-Nagata
  • Tatsuya NagataEmail author
Brief Report
  • 197 Downloads

Abstract

Melon plants with severe yellowing symptoms from in Brazil were analyzed by high-throughput sequencing. Sequences homologous to the genome of the polerovirus cucurbit aphid-borne yellows virus (CABYV) were frequently retrieved. Two draft CABYV genomes were assembled from two pooled melon samples that contained an identical putative recombinant fragment in the 3′ region with an unknown polerovirus. The complete genomes of these isolates revealed by Sanger sequencing share 96.8% nucleotide identity, while both sequences share 73.7% nucleotide identity with a CABYV-N isolate from France. A molecular-clock analysis suggested that CABYV was introduced into Brazil ~ 68 years ago.

Notes

Acknowledgements

This work was supported by CNPq with the project number of 401755/2013-4. MAA work was supported by grant AGL2015-65838 (Ministerio de Economía, Industria y Competitividad, Spain). AKIN and TN are CNPq fellows.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2018_4024_MOESM1_ESM.doc (37 kb)
Supplementary material 1 (DOC 37 kb)
705_2018_4024_MOESM2_ESM.mp4 (16.5 mb)
Supplementary Figure 1. Animation showing the predicted distribution route of CABYV based on the molecular clock for the P0 gene. (MP4 16932 kb)

References

  1. 1.
    Santos AA, Cardoso JE, Bezerra MA et al (2008) Progress analysis and damages due to melon yellowing-associated virus. Summa Phytopathol. 34:359–360CrossRefGoogle Scholar
  2. 2.
    Costa TM, Blawid R, Costa AC Jr. et al (2017) Complete genome sequence of melon yellowing-associated virus from melon plants with the severe yellowing disease in Brazil. Arch Virol 162:3899–3901CrossRefGoogle Scholar
  3. 3.
    Lecoq H, Bourdin D, Wipf-Scheibel C (1992) A new yellowing disease of cucurbits caused by a luteovirus, curcubit aphid-born yellow virus. Plant Pathol 41:749–761CrossRefGoogle Scholar
  4. 4.
    Mnari-Hattab M, Kummert J, Roussel S et al (2005) First report of Cucurbit aphid-borne yellows virus in Tunisia causing yellows on five cucurbitacious species. Plant Dis 89:776CrossRefGoogle Scholar
  5. 5.
    Kassem MA, Sempere RN, Juarez M et al (2007) Cucurbit aphid-borne yellows virus is prevalent in field-grown cucurbit crops of southeastern Spain. Plant Dis 91:232–238CrossRefGoogle Scholar
  6. 6.
    Blawid R, Silva JMF, Nagata T (2017) Discovering and sequencing new plant viral genomes by next-generation sequencing: description of a practical pipeline. Ann Appl Biol 170:301–314CrossRefGoogle Scholar
  7. 7.
    Nicolini C, Inoue-Nagata AK, Nagata T (2015) Complete genome sequence of a proposed new tymovirus, tomato blistering mosaic virus. Arch Virol 160:609–612CrossRefGoogle Scholar
  8. 8.
    Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  9. 9.
    Darriba D, Taboada GL, Doallo R et al (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefGoogle Scholar
  10. 10.
    Darriba D, Taboada GL, Doallo R et al (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165CrossRefGoogle Scholar
  11. 11.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  12. 12.
    Martin DP, Murrel B, Golden M et al (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003CrossRefGoogle Scholar
  13. 13.
    Posada D (2002) Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19:708–717CrossRefGoogle Scholar
  14. 14.
    Rambaut A, Lam TT, Carvalho LM et al (2016) Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2:vew007CrossRefGoogle Scholar
  15. 15.
    Drummond AJ, Suchard MA, Xie D et al (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973CrossRefGoogle Scholar
  16. 16.
    Bielejec F, Rambaut A, Suchard MA et al (2011) SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27:2910–2912CrossRefGoogle Scholar
  17. 17.
    Csorba T, Lózsa R, Hutvágner G et al (2010) Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J 62:463–472CrossRefGoogle Scholar
  18. 18.
    Guilley H, Wipf-Scheibel C, Richards K et al (1994) Nucleotide sequence of cucurbit aphid-borne yellows luteovirus. Virology 202:1012–1017CrossRefGoogle Scholar
  19. 19.
    Smirnova E, Firth AE, Miller WA et al (2015) Discovery of a small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. Plos Pathog 11:e1004868CrossRefGoogle Scholar
  20. 20.
    Knierim D, Deng TC, Tsai WS et al (2010) Molecular identification of three distinct Polerovirus species and a recombinant Cucurbit aphid-borne yellows virus strain infecting cucurbit crops in Taiwan. Plant Pathol 59:991–1002CrossRefGoogle Scholar
  21. 21.
    Pagán I, Holmes EC (2010) Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. J Virol 84:6177–6187CrossRefGoogle Scholar
  22. 22.
    Knierim D, Tsai WS, Deng TC et al (2013) Full-length genome sequences of four polerovirus isolates infecting cucurbits in Taiwan determined from total RNA extracted from field samples. Plant Pathol 62:633–641CrossRefGoogle Scholar
  23. 23.
    Ibaba JD, Laing MD, Gubba A (2016) Pepo aphid-borne yellows virus: a new species in the genus Polerovirus. Virus Genes 53:134–136CrossRefGoogle Scholar
  24. 24.
    Knierim D, Maiss E, Kenyon L et al (2015) First full-length genome sequence of the polerovirus luffa aphid-borne yellows virus (LABYV) reveals the presence of at least two consensus sequences in an isolate from Thailand. Arch Virol 160:2633–2636CrossRefGoogle Scholar
  25. 25.
    Kassem MA, Juarez M, Gómez P et al (2013) Genetic diversity and potential vectors and reservoirs of Cucurbit aphid-borne yellows virus in southeastern Spain. Phytopathology 103:1188–1197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Thiago Marques Costa
    • 1
  • Rosana Blawid
    • 1
  • Miguel A. Aranda
    • 2
  • Débora Maria Sansini Freitas
    • 3
  • Genira Pereira Andrade
    • 4
  • Alice Kazuko Inoue-Nagata
    • 5
  • Tatsuya Nagata
    • 1
    Email author
  1. 1.Campus Darcy Ribeiro, Departamento de Biologia CelularUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC)MurciaSpain
  3. 3.Embrapa SemiáridoPetrolinaBrazil
  4. 4.Departamento de AgronomiaUniversidade Federal Rural de PernambucoRecifeBrazil
  5. 5.Embrapa HortaliçasBrasíliaBrazil

Personalised recommendations