Archives of Virology

, Volume 163, Issue 12, pp 3327–3338 | Cite as

Decrease in the expression level of the gene encoding the putative Bombyx mori bidensovirus receptor during virus infection

  • Katsuhiko ItoEmail author
  • Takeshi Fujii
  • Takeshi Yokoyama
  • Keiko Kadono-Okuda
Original Article


Bombyx mori bidensovirus (BmBDV) is a pathogen that replicates only in the midgut columnar cells of silkworms, causing fatal disease. Resistance to BmBDV, which does not depend on the viral dose, is determined by a single gene, nsd-2 (resistance gene). Previously, we identified nsd-2 by positional cloning using B. mori genome information and found that this gene encodes a putative amino acid transporter that may function as a receptor for BmBDV. In this study, to understand the relationship between BmBDV and the putative virus receptor, we performed expression analysis of +nsd−2 (allele of nsd-2; susceptibility gene) after virus infection. Quantitative RT-PCR analysis using total RNA isolated from the midgut of an uninfected and a virus-infected silkworm revealed no change in the expression levels of +nsd−2 in the uninfected silkworm, whereas the expression levels of +nsd−2 drastically decreased in the virus-infected silkworm. Moreover, comparison of the expression pattern between the BmBDV-derived transcript and +nsd−2 revealed that the expression level of +nsd−2 decreased with an increase in the virus-derived transcript. In addition, expression analysis of 26 genes encoding other transporters in the midgut demonstrated that the expression levels of three other genes also decreased similarly to the decrease of the expression levels of +nsd−2 after virus infection. Thus, our results suggest that some transporters, including +nsd−2, are affected by BmBDV infection.



Non-susceptibility to BmDNV-2


Non-susceptibility to Zhenjiang (China) strain of BmDNV


Reverse transcription polymerase chain reaction



This work was supported, in part, by JSPS Grant-in-Aid for Young Scientists (B) 15K18807 (to KI).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

705_2018_4017_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1083 kb)


  1. 1.
    Bergoin M, Tijssen P (2000) Molecular biology of Densovirinae. Contrib. Microbiol 4:12–32CrossRefGoogle Scholar
  2. 2.
    Tattersall P, Bergoin M, Bloom ME, Brown KE, Linden RM, Muzyczka N, Parrish CR, Tijssen P (2005) Family Parvoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy—eighth report of the International Committee on Taxonomy of viruses. Elsevier, San Diego, pp 353–369Google Scholar
  3. 3.
    Adams MJ, Carstens EB (2012) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol 57:1411–1422. CrossRefGoogle Scholar
  4. 4.
    Seki H, Iwashita Y (1983) Histopathological features and pathogenicity of a densonucleosis virus of the silkworm, Bombyx mori, isolated from sericultural farms in Yamanashi prefecture. J Seric Sci Jpn 52:400–405. (in Japanese with English summary) CrossRefGoogle Scholar
  5. 5.
    Wang YJ, Yao Q, Chen KP, Wang Y, Lu J, Han X (2007) Characterization of the genome structure of Bombyx mori densovirus (China isolate). Virus Genes 35:103–108. CrossRefPubMedGoogle Scholar
  6. 6.
    Gupta T, Ito K, Kadono-Okuda K, Murthy GN, Gowri EV, Ponnuvel KM (2018) Characterization and genome comparison of an Indian isolate of bidensovirus infecting the silkworm Bombyx mori. Arch Virol 163:125–134. CrossRefPubMedGoogle Scholar
  7. 7.
    Kobayashi M, Hashimoto T, Mori H, Nagamine T (1986) Changes in DNA, RNA, protein and glycogen in the midgut of the silkworm, Bombyx mori (Lepidoptera: Bombydicae), during the infection with a densonucleosis virus. Appl Ent Zool 21:486–489. CrossRefGoogle Scholar
  8. 8.
    Watanabe H, Kurihara Y (1988) Comparative histopathology of two densonucleoses in the silkworm, Bombyx mori. J Invertebr Pathol 51:287–290. CrossRefGoogle Scholar
  9. 9.
    Seki H (1984) Mode of inheritance of the resistance to the infection with the densonucleosis virus (Yamanashi isolate) in the silkworm, Bombyx mori. J Seric Sci Jpn 53:472–475. (in Japanese with English summary) CrossRefGoogle Scholar
  10. 10.
    Ogoyi DO, Kadono-Okuda K, Eguchi R, Furuta Y, Hara W, Nguu EK, Nagayasu K (2003) Linkage and mapping analysis of a non-susceptibility gene to densovirus (nsd-2) in the silkworm, Bombyx mori. Insect Mol Biol 12:117–124. CrossRefPubMedGoogle Scholar
  11. 11.
    Qin J, Yi WZ (1996) Genetic linkage analysis of nsd-Z, the nonsusceptibility gene of Bombyx mori to the Zhenjiang (China) strain densonucleosis virus. Sericologia 36:241–244Google Scholar
  12. 12.
    Ito K, Kidokoro K, Sezutsu H, Nohata J, Yamamoto K, Kobayashi I, Uchino K, Kalyebi A, Eguchi R, Hara W, Tamura T, Katsuma S, Shimada T, Mita K, Kadono-Okuda K (2008) Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus. Proc Natl Acad Sci USA 105:7523–7527. CrossRefPubMedGoogle Scholar
  13. 13.
    Ito K, Shimura S, Katsuma S, Tsuda Y, Kobayashi J, Tabunoki H, Yokoyama T, Shimada T, Kadono-Okuda K (2016) Gene expression and localization analysis of Bombyx mori bidensovirus and its putative receptor in B. mori midgut. J Invertebr Pathol 136:50–56. CrossRefPubMedGoogle Scholar
  14. 14.
    Shimomura M, Minami H, Suetsugu Y, Ohyanagi H, Satoh C, Antonio B, Nagamura Y, Kadono-Okuda K, Kajiwara H, Sezutsu H, Nagaraju J, Goldsmith MR, Xia Q, Yamamoto K, Mita K (2009) KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genom 10:486. CrossRefGoogle Scholar
  15. 15.
    Suetsugu Y, Futahashi R, Kanamori H, Kadono-Okuda K, Sasanuma S, Narukawa J, Ajimura M, Jouraku A, Namiki N, Shimomura M, Sezutsu H, Osanai-Futahashi M, Suzuki MG, Daimon T, Shinoda T, Taniai K, Asaoka K, Niwa R, Kawaoka S, Katsuma S, Tamura T, Noda H, Kasahara M, Sugano S, Suzuki Y, Fujiwara H, Kataoka H, Arunkumar KP, Tomar A, Nagaraju J, Goldsmith MR, Feng Q, Xia Q, Yamamoto K, Shimada T, Mita K (2013) Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori. G3 Bethesda 3:1481–1492. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lü P, Pan Y, Yang Y, Zhu F, Li C, Guo Z, Yao Q, Chen K (2018) Discovery of anti-viral molecules and their vital functions in Bombyx mori. J Invertebr Pathol 154:12–18. CrossRefPubMedGoogle Scholar
  17. 17.
    Iwanaga M, Shimada T, Kobayashi M, Kang W (2007) Identification of differentially expressed host genes in Bombyx mori nucleopolyhedrovirus infected cells by using subtractive hybridization. Appl Entomol Zool 42:151–159. CrossRefGoogle Scholar
  18. 18.
    Sagisaka A, Fujita K, Nakamura Y, Ishibashi J, Noda H, Imanishi S, Mita K, Yamakawa M, Tanaka H (2010) Genome-wide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus. Virus Res 147:166–175. CrossRefPubMedGoogle Scholar
  19. 19.
    Liu W, Liu J, Lu Y, Gong Y, Zhu M, Chen F, Liang Z, Zhu L, Kuang S, Hu X, Cao G, Xue R, Gong C (2015) Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori. Mol Immunol 65:391–397. CrossRefPubMedGoogle Scholar
  20. 20.
    Kaufmann B, Simpson AA, Rossmann MG (2004) The structure of human parvovirus B19. Proc Natl Acad Sci USA 101:11628–11633. CrossRefPubMedGoogle Scholar
  21. 21.
    Brown KE, Anderson SM, Young NS (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262:114–117. CrossRefPubMedGoogle Scholar
  22. 22.
    Weigel-Kelley KA, Yoder MC, Srivastava A (2003) Alpha5beta1 integrin as a cellular coreceptor for human parvovirus B19: requirement of functional activation of beta1 integrin for viral entry. Blood 102:3927–3933. CrossRefPubMedGoogle Scholar
  23. 23.
    Munakata Y, Saito-Ito T, Kumura-Ishii K, Huang J, Kodera T, Ishii T, Hirabayashi Y, Koyanagi Y, Sasaki T (2005) Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection. Blood 106:3449–3456. CrossRefPubMedGoogle Scholar
  24. 24.
    Jousset FX, Barreau C, Boublik Y, Cornet M (1993) A parvo-like virus persistently infecting a C6/36 clone of Aedes albopictus mosquito cell line and pathogenic for Aedes aegypti larvae. Virus Res 29:99–114. CrossRefPubMedGoogle Scholar
  25. 25.
    Chen S, Cheng L, Zhang Q, Lin W, Lu X, Brannan J, Zhou ZH, Zhang J (2004) Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedes albopictus C6/36 cell line. Virology 318:123–133. CrossRefPubMedGoogle Scholar
  26. 26.
    Li Y, Jousset FX, Giraud C, Rolling F, Quiot JM, Bergoin M (1995) A titration procedure of the Junonia coenia densovirus and quantitation of transfection by its cloned genomic DNA in four lepidopteran cell lines. J Virol Methods 57:47–60. CrossRefGoogle Scholar
  27. 27.
    Ward TW, Kimmick MW, Afanasiev BN, Carlson JO (2001) Characterization of the structural gene promoter of Aedes aegypti densovirus. J Virol 75:1325–1331. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Afanasiev B, Carlson J (2000) Densovirinae as gene transfer vehicles. Contrib Microbiol 4:33–58CrossRefGoogle Scholar
  29. 29.
    Shirk PD, Bossin H, Furlong RB, Gillett JL (2007) Regulation of Junonia coenia densovirus P9 promoter expression. Insect Mol Biol 16:623–633. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Science of Biological ProductionTokyo University of Agriculture and TechnologyFuchuJapan
  2. 2.Division of BiotechnologyInstitute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaJapan

Personalised recommendations