Archives of Virology

, Volume 163, Issue 11, pp 2937–2946 | Cite as

A complex virome unveiled by deep sequencing analysis of RNAs from a French Pinot Noir grapevine exhibiting strong leafroll symptoms.

  • Monique Beuve
  • Jean-Michel HilyEmail author
  • Antoine Alliaume
  • Catherine Reinbold
  • Jean Le Maguet
  • Thierry Candresse
  • Etienne Herrbach
  • Olivier Lemaire
Original Article


We have characterized the virome of a grapevine Pinot Noir accession (P70) that displayed, over the year, very stable and strong leafroll symptoms. For this, we have used two extraction methods (dsRNA and total RNA) coupled with the high throughput sequencing (HTS) Illumina technique. While a great disparity in viral sequences were observed, both approaches gave similar results, revealing a very complex infection status. Five virus and viroid isolates [Grapevine leafroll-associated viruse-1 (GLRaV-1), Grapevine virus A (GVA), Grapevine rupestris stem pitting-associated virus (GRSPaV), Hop stunt viroid (HSVd) and Grapevine yellow speckle viroid 1 (GYSVd1)] were detected in P70 with a grand total of eleven variants being identified and de novo assembled. A comparison between both extraction methods regarding their power to detect viruses and the ease of genome assembly is also provided.



This work was supported by the Institut National de la Recherche Agronomique (INRA) and FranceAgriMer. JLM and AA were supported by Ph.D. grants respectively from the French National Association of Research and Technology and from Department SPE of INRA. Additional funds were kindly provided by three French professional committees for viticulture (the Interprofessional Committee of Champagne Wine, CIVC, Epernay; the Interprofessional Office of Burgundy Wines, BIVB, Beaune and the Interprofessional Committee of Wines from Alsace, CIVA, Colmar). This work was also partially supported by the Agence Nationale pour la Recherche, ANR Vinobodies contract: ANR- 14-CE19-0018-02. The authors acknowledge Jacky Misbach and the greenhouse team for technical support, Lionel Ley and the members of the experimental unit of INRA-Colmar for the production of plants, Emmanuelle Vigne and Shahinez Garcia for useful input into creating a more readable manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare there are no conflicts of interest.

Research involving human participants and/or animals

The research did not involve human participants or animals.

Informed consent

The research did not involve human participants or animals.

Supplementary material

705_2018_3949_MOESM1_ESM.pdf (681 kb)
Supplementary material 1 (PDF 680 kb)
705_2018_3949_MOESM2_ESM.pptx (2.2 mb)
Supplementary material 2 (PPTX 2301 kb)


  1. 1.
    Abou-Ghanem N, Saldarelli P, Minafra A, Buzkan N, Castellano MA, Martelli GP (1997) Properties of Grapevine virus D, a novel putative trichovirus. J Plant Pathol 79:15–25Google Scholar
  2. 2.
    Al Rwahnih M, Daubert S, Golino D, Rowhani A (2009) Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387:395–401CrossRefPubMedGoogle Scholar
  3. 3.
    Al Rwahnih M, Dolja VV, Daubert S, Koonin EV, Rowhani A (2012) Genomic and biological analysis of Grapevine leafroll-associated virus 7 reveals a possible new genus within the family Closteroviridae. Virus Res 163:302–309CrossRefPubMedGoogle Scholar
  4. 4.
    Al Rwahnih M, Sudarshana MR, Uyemoto JK, Rowhani A (2012) Complete genome sequence of a novel vitivirus isolated from grapevine. J Virol 86:9545CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Almeida RPP, Daane KM, Bell VA, Blaisdell GK, Cooper ML, Herrbach E, Pietersen G (2013) Ecology and management of grapevine leafroll disease. Front Microbiol 4:94CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Beuve M, Moury B, Spilmont A-S, Sempé-Ignatovic L, Hemmer C, Lemaire O (2013) Viral sanitary status of declining grapevine Syrah clones and genetic diversity of Grapevine rupestris stem pitting-associated virus. Eur J Plant Pathol 135:439–452CrossRefGoogle Scholar
  7. 7.
    Blouin AG, Chooi KM, Warren B, Napier KR, Barrero RA, MacDiarmid RM (2018) Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand. Arch Virol 163:1371–1374CrossRefPubMedGoogle Scholar
  8. 8.
    Blouin AG, Keenan S, Napier KR, Barrero RA, MacDiarmid RM (2018) Identification of a novel vitivirus from grapevines in New Zealand. Arch Virol 163:281–284CrossRefPubMedGoogle Scholar
  9. 9.
    Bratlie MS, Drabløs F (2005) Bioinformatic mapping of AlkB homology domains in viruses. BMC Genomics 6:1CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Candresse T, Marais A, Faure C, Gentit P (2013) Association of Little cherry virus 1 (LChV1) with the shirofugen stunt disease and characterization of the genome of a divergent LChV1 isolate. Phytopathology 103:293–298CrossRefPubMedGoogle Scholar
  11. 11.
    Candresse T, Filloux D, Muhire B, Julian C, Galzi S, Fort G, Bernardo P, Daugrois J-H, Fernandez E, Martin DP, Varsani A, Roumagnac P (2014) Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context. PLoS One 9:e102945CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Candresse T, Theil S, Faure C, Marais A (2018) Determination of the complete genomic sequence of grapevine virus H, a novel vitivirus infecting grapevine. Arch Virol 163:277–280CrossRefPubMedGoogle Scholar
  13. 13.
    Czotter N, Molnar J, Szabó E, Demian E, Kontra L, Baksa I, Szittya G, Kocsis L, Deak T, Bisztray G, Tusnady GE, Burgyan J, Varallyay E (2018) Ngs of virus-derived small rnas as a diagnostic method used to determine viromes of hungarian vineyards. Front Microbiol 9:122CrossRefPubMedCentralGoogle Scholar
  14. 14.
    du Preez J, Stephan D, Mawassi M, Burger JT (2011) The grapevine-infecting vitiviruses, with particular reference to grapevine virus A. Arch Virol 156:1495CrossRefPubMedGoogle Scholar
  15. 15.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fazeli CF, Rezaian MA (2000) Nucleotide sequence and organization of ten open reading frames in the genome of Grapevine leafroll-associated virus 1 and identification of three subgenomic RNAs. J Gen Virol 81:605–615CrossRefPubMedGoogle Scholar
  17. 17.
    Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N, La Notte P, Terlizzi F, Credi R, Saldarelli P (2012) A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in cv Pinot gris. Virus Res 163:262–268CrossRefPubMedGoogle Scholar
  18. 18.
    Glasa M, Predajňa L, Šoltys K, Sihelská N, Nagyová A, Wetzel T, Sabanadzovic S (2017) Analysis of Grapevine rupestris stem pitting-associated virus in Slovakia reveals differences in intra-host population diversity and naturally occurring recombination events. Plant Pathol J 33:34–42CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Goszczynski DE, Jooste AEC (2003) Identification of divergent variants of Grapevine virus A. Eur J Plant Pathol 109:397–403CrossRefGoogle Scholar
  20. 20.
    Goszczynski DE (2010) Divergent molecular variants of Grapevine virus B (GVB) from corky bark (CB)-affected and CB-negative LN33 hybrid grapevines. Virus Genes 41:273–281CrossRefPubMedGoogle Scholar
  21. 21.
    Gugerli P, Brugger J, Bovey R (1984) L’enroulement de la vigne: mise en évidence de particules virales et développment dune méthode inmunoenzymatique pour le diagnostic rapide. Revue Suisse de Vitic Arboric Hortic 16:299–304Google Scholar
  22. 22.
    Habili N, Farrokhi N, Lima MF, Nicholas P, Randles JW (2006) Distribution of Rupestris stem-pitting-associated virus variants in two Australian vineyards showing different symptoms. Ann Appl Biol 148:91–96CrossRefGoogle Scholar
  23. 23.
    Herrbach E, Alliaume A, Prator CA, Daane KM, Cooper ML, Almeida RPP (2017) Vector transmission of grapevine Leafroll-associated viruses. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer International Publishing, New York, pp 483–503CrossRefGoogle Scholar
  24. 24.
    Hily J-M, Demanèche S, Poulicard N, Tannières M, Djennane S, Beuve M, Vigne E, Demangeat G, Komar V, Gertz C, Marmonier A, Hemmer C, Vigneron S, Marais A, Candresse T, Simonet P, Lemaire O (2018) Metagenomic-based impact study of transgenic grapevine rootstock on its associated virome and soil bacteriome. Plant Biotech J 16:208–220CrossRefGoogle Scholar
  25. 25.
    Hily JM, Beuve M, Vigne E, Demangeat G, Candresse T, Lemaire O (2018) A genome-wide study of grapevine rupestris stem pitting-associated virus. Arch Virol (in press)Google Scholar
  26. 26.
    Hoefert L, Gifford M (1967) Grapevine leafroll virus—history and anatomic effects. Hilgardia 38:403–426CrossRefGoogle Scholar
  27. 27.
    Hommay G, Komar V, Lemaire O, Herrbach E (2008) Grapevine virus A transmission by larvae of Parthenolecanium corni. Eur J Plant Pathol 121:185–188CrossRefGoogle Scholar
  28. 28.
    Hu G-J, Dong Y-F, Zhu H-J, Zhang Z-P, Fan X-D, Ren F, Zhou J (2015) Molecular characterizations of two grapevine rupestris stem pitting-associated virus isolates from China. Arch Virol 160:2641–2645CrossRefPubMedGoogle Scholar
  29. 29.
    Ito T, Nakaune R (2016) Molecular characterization of a novel putative ampelovirus tentatively named grapevine leafroll-associated virus 13. Arch Virol 161:2555–2559CrossRefPubMedGoogle Scholar
  30. 30.
    Jo Y, Song M-K, Choi H, Park J-S, Lee J-W, Lian S, Lee BC, Cho WK (2017) Genome sequence of grapevine virus K, a novel vitivirus infecting grapevine. Genome Announc 5:e00994-17CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jo Y, Song M-K, Choi H, Park J-S, Lee J-W, Lian S, Lee BC, Cho WK (2017) Genome sequence of grapevine Virus T, a novel foveavirus infecting grapevine. Genome Announc 5:e00995-17CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Komínek P (2008) Distribution of grapevine viruses in vineyards of the Czech Republic. J Plant Pathol 90:357–358Google Scholar
  33. 33.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Le Maguet J, Beuve M, Herrbach E, Lemaire O (2012) Transmission of six ampeloviruses and two vitiviruses to grapevine by Phenacoccus aceris. Phytopathology 102:717–723CrossRefPubMedGoogle Scholar
  35. 35.
    Le Maguet J, Fuchs J-J, Chadœuf J, Beuve M, Herrbach E, Lemaire O (2013) The role of the mealybug Phenacoccus aceris in the spread of Grapevine leafroll-associated virus −1 (GLRaV-1) in two French vineyards. Eur J Plant Pathol 135:415–427CrossRefGoogle Scholar
  36. 36.
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  37. 37.
    Ling R, Pate AE, Carr JP, Firth AE (2013) An essential fifth coding ORF in the sobemoviruses. Virology 446:397–408CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maree HJ, Almeida RPP, Bester R, Chooi KM, Cohen D, Dolja VV, Fuchs MF, Golino DA, Jooste AEC, Martelli GP, Naidu RA, Rowhani A, Saldarelli P, Burger JT (2013) Grapevine leafroll-associated virus 3. Front Microbiol 4:82CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Martelli GP, Ghanem-Sabanadzovic NA, Agranovsky AA, Rwahnih MA, Dolja VV, Dovas CI, Fuchs M, Gugerli P, Hu JS, Jelkmann W, Katis NI, Maliogka VI, Melzer MJ, Menzel W, Minafra A, Rott ME, Rowhani A, Sabanadzovic S, Saldarelli P (2012) Taxonomic revision of the family Closteroviridae with special reference to the grapevine leafroll-associated members of the genus Ampelovirus and the putative species unassigned to the family. J Plant Pathol 94:7–19Google Scholar
  40. 40.
    Martelli GP (2017) An overview on grapevine viruses, viroids, and the diseases they cause. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer International Publishing, Cham, pp 31–46CrossRefGoogle Scholar
  41. 41.
    Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:1–5CrossRefGoogle Scholar
  42. 42.
    Meng B, Pang SZ, Forsline PL, McFerson JR, Gonsalves D (1998) Nucleotide sequence and genome structure of grapevine rupestris stem pitting associated virus-1 reveal similarities to apple stem pitting virus. J Gen Virol 79:2059–2069CrossRefPubMedGoogle Scholar
  43. 43.
    Meng B, Rebelo AR, Fisher H (2006) Genetic diversity analyses of grapevine Rupestris stem pitting-associated virus reveal distinct population structures in scion versus rootstock varieties. J Gen Virol 87:1725–1733CrossRefPubMedGoogle Scholar
  44. 44.
    Milne RG, Conti M, Lesemann D-E, Stellmach G, Tanne E, Cohen J (1984) Closterovirus-like particles of two types associated with diseased grapevines. Phytopathol Z 110:360–368CrossRefGoogle Scholar
  45. 45.
    Naidu RA, Maree HJ, Burger JT (2015) Grapevine leafroll disease and associated viruses: a unique pathosystem. Annu Rev Phytopathol 53:613–634CrossRefPubMedGoogle Scholar
  46. 46.
    Nakaune R, Inoue K, Nasu H, Kakogawa K, Nitta H, Imada J, Nakano M (2008) Detection of viruses associated with rugose wood in Japanese grapevines and analysis of genomic variability of Rupestris stem pitting-associated virus. J Gen Plant Pathol 74:156–163CrossRefGoogle Scholar
  47. 47.
    Nakaune R, Toda S, Mochizuki M, Nakano M (2008) Identification and characterization of a new vitivirus from grapevine. Adv Virol 153:1827Google Scholar
  48. 48.
    Nolasco G, Santos C, Petrovic N, Teixeira Santos M, Cortez I, Fonseca F, Boben J, Nazaré Pereira AM, Sequeira O (2006) Rupestris stem pitting associated virus isolates are composed by mixtures of genomic variants which share a highly conserved coat protein. Arch Virol 151:83–96CrossRefPubMedGoogle Scholar
  49. 49.
    Poojari S, Alabi OJ, Fofanov VY, Naidu RA (2013) A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family Geminiviridae implicated in grapevine redleaf disease by next-generation sequencing. PLoS One 8:e64194CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Reynard JS, Brodard J, Dubuis N, Yobregat O, Kominek P, Schumpp O, Schaerer S (2017) First report of grapevine rupestris vein feathering virus in Swiss grapevines. Plant Dis 101:1062CrossRefGoogle Scholar
  51. 51.
    Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus metagenomics: advances in virus discovery. Phytopathology 105:716–727CrossRefPubMedGoogle Scholar
  52. 52.
    van den Born E, Omelchenko MV, Bekkelund A, Leihne V, Koonin EV, Dolja VV, Falnes PØ (2008) Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucleic Acids Res 36:5451–5461CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SVQV, Université de StrasbourgColmarFrance
  2. 2.Institut Français des Productions Cidricoles (IFPC)SéesFrance
  3. 3.UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. BordeauxVillenave d’Ornon CedexFrance

Personalised recommendations