The interaction of cellular protein ANP32A with influenza A virus polymerase component PB2 promotes vRNA synthesis

  • Xiuli Wei
  • Zhixin Liu
  • Jingjie Wang
  • Ruiping Yang
  • Jing Yang
  • Yang Guo
  • Huabing Tan
  • Hongying Chen
  • Qiang Liu
  • Long LiuEmail author
Original Article


The subunits PA, PB1, and PB2 of influenza A virus RNA polymerase are essential for efficient viral RNA synthesis and virus replication because of their role in recruiting multiple nuclear proteins. ANP32A is an acidic leucine-rich nuclear phosphoprotein 32 (ANP32) family member and a crucial cellular protein that determines the species specificity of the influenza virus RNA polymerase activity. However, how ANP32A modulates polymerase activity remains largely unknown. In this study, we showed that viral RNA synthesis was increased in A549 cells overexpressing ANP32A and decreased after treatment with ANP32A RNAi. This decrease in RNA synthesis was reversed by rescued ANP32A expression. The results of docking modeling, co-immunoprecipitation, and yeast two-hybrid assays showed that PB2 was the only subunit of the three that interacted with ANP32A. The C-terminal portion of ANP32A and the middle domains (residues 307-534) of PB2 were required for PB2-ANP32A interaction. Glu189 and Glu196 in ANP32A and Gly450 and Gln447 in PB2 were essential for interaction between ANP32A and PB2. These residues were located in conserved regions of the ANP32A or PB2 protein sequences. These data suggest that ANP32A is recruited to the polymerase through direct interaction with PB2 via critical amino acid residue interactions and promotes viral RNA synthesis. Our findings might provide new insights into the molecular mechanisms underlying influenza virus RNA synthesis and replication in infected human cells.



This study was funded by the Faculty Development Grants of Hubei University of Medicine (No. 2016QDJZR03), the Natural Science Foundation of Hubei Province (No. 2018CFB185), the Scientific and Technological Project of Shiyan City (No. 17Y32), and Project of Hubei Provincial Department of Education.

Compliance with ethical standards

Conflict of interest

The authors declare that they had no conflict of interest.

Supplementary material

705_2018_4139_MOESM1_ESM.docx (556 kb)
Supplementary material 1 (DOCX 556 kb)


  1. 1.
    Te Velthuis AJ, Fodor E (2016) Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 14:479–493CrossRefGoogle Scholar
  2. 2.
    Fodor E (2013) The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication. Acta Virol 57:113–122CrossRefGoogle Scholar
  3. 3.
    Bortz E, Westera L, Maamary J, Steel J, Albrecht RA, Manicassamy B, Chase G, Martinez-Sobrido L, Schwemmle M, Garcia-Sastre A (2011) Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins. MBio 2:e00151-11CrossRefGoogle Scholar
  4. 4.
    Zhao M, Wang L, Li S (2017) Influenza A virus-host protein interactions control viral pathogenesis. Int J Mol Sci 18:1673CrossRefGoogle Scholar
  5. 5.
    Nagata K, Kawaguchi A, Naito T (2008) Host factors for replication and transcription of the influenza virus genome. Rev Med Virol 18:247–260CrossRefGoogle Scholar
  6. 6.
    Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277:45306–45314CrossRefGoogle Scholar
  7. 7.
    Momose F, Basler CF, O’Neill RE, Iwamatsu A, Palese P, Nagata K (2001) Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol 75:1899–1908CrossRefGoogle Scholar
  8. 8.
    Wang Q, Li Q, Liu R, Zheng M, Wen J Zhao G (2016) Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells. J Proteom 136:48–54CrossRefGoogle Scholar
  9. 9.
    Naito T, Kiyasu Y, Sugiyama K, Kimura A, Nakano R, Matsukage A, Nagata K (2007) An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis. Proc Natl Acad Sci USA 104:18235–18240CrossRefGoogle Scholar
  10. 10.
    Cao M, Wei C, Zhao L, Wang J, Jia Q, Wang X, Jin Q, Deng T (2014) DnaJA1/Hsp40 is co-opted by influenza A virus to enhance its viral RNA polymerase activity. J Virol 88:14078–14089CrossRefGoogle Scholar
  11. 11.
    Zheng W, Tao YJ (2013) Structure and assembly of the influenza A virus ribonucleoprotein complex. FEBS Lett 587:1206–1214CrossRefGoogle Scholar
  12. 12.
    Dawson WK, Lazniewski M, Plewczynski D (2017) RNA structure interactions and ribonucleoprotein processes of the influenza A virus. Brief Funct Genom 17:402–414Google Scholar
  13. 13.
    Compans RW, Content J, Duesberg PH (1972) Structure of the ribonucleoprotein of influenza virus. J Virol 10:795–800Google Scholar
  14. 14.
    Coloma R, Valpuesta JM, Arranz R, Carrascosa JL, Ortin J, Martin-Benito J (2009) The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog 5:e1000491CrossRefGoogle Scholar
  15. 15.
    Pflug A, Lukarska M, Resa-Infante P, Reich S, Cusack S (2017) Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res 234:103–117CrossRefGoogle Scholar
  16. 16.
    Eisfeld AJ, Neumann G, Kawaoka Y (2015) At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol 13:28–41CrossRefGoogle Scholar
  17. 17.
    Engelhardt OG, Fodor E (2006) Functional association between viral and cellular transcription during influenza virus infection. Rev Med Virol 16:329–345CrossRefGoogle Scholar
  18. 18.
    Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ, Cusack S (2008) The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15:500–506CrossRefGoogle Scholar
  19. 19.
    Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914–918CrossRefGoogle Scholar
  20. 20.
    Crepin T, Dias A, Palencia A, Swale C, Cusack S, Ruigrok RW (2010) Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol 84:9096–9104CrossRefGoogle Scholar
  21. 21.
    Reilly PT, Yu Y, Hamiche A, Wang L (2014) Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. BioEssays 36:1062–1071CrossRefGoogle Scholar
  22. 22.
    Tsujio I, Zaidi T, Xu J, Kotula L, Grundke-Iqbal I, Iqbal K (2005) Inhibitors of protein phosphatase-2A from human brain structures, immunocytological localization and activities towards dephosphorylation of the Alzheimer type hyperphosphorylated tau. FEBS Lett 579:363–372CrossRefGoogle Scholar
  23. 23.
    Zamora-Caballero S, Siauciunaite-Gaubard L, Bravo J (2015) High-resolution crystal structure of the leucine-rich repeat domain of the human tumour suppressor PP32A (ANP32A). Acta Crystallogr Sect F Struct Biol Commun 71:684–687CrossRefGoogle Scholar
  24. 24.
    Kadota S, Nagata K (2011) pp32, an INHAT component, is a transcription machinery recruiter for maximal induction of IFN-stimulated genes. J Cell Sci 124:892–899CrossRefGoogle Scholar
  25. 25.
    Sugiyama K, Kawaguchi A, Okuwaki M, Nagata K (2015) pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. eLife 4:e08939CrossRefGoogle Scholar
  26. 26.
    Long JS, Giotis ES, Moncorge O, Frise R, Mistry B, James J, Morisson M, Iqbal M, Vignal A, Skinner MA, Barclay WS (2016) Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529:101–104CrossRefGoogle Scholar
  27. 27.
    Mehle A (2016) The Avian influenza virus polymerase brings ANP32A home to roost. Cell Host Microbe 19:137–138CrossRefGoogle Scholar
  28. 28.
    Domingues P, Hale BG (2017) Functional insights into ANP32A-dependent influenza a virus polymerase host restriction. Cell Rep 20:2538–2546CrossRefGoogle Scholar
  29. 29.
    Zhou Z, Cao M, Guo Y, Zhao L, Wang J, Jia X, Li J, Wang C, Gabriel G, Xue Q, Yi Y, Cui S, Jin Q, Wang J, Deng T (2014) Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus. Nat Commun 5:3259CrossRefGoogle Scholar
  30. 30.
    Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–181CrossRefGoogle Scholar
  31. 31.
    Huyton T, Wolberger C (2007) The crystal structure of the tumor suppressor protein pp32 (Anp32a): structural insights into Anp32 family of proteins. Protein Sci 16:1308–1315CrossRefGoogle Scholar
  32. 32.
    Tuncbag N, Gursoy A, Nussinov R, Keskin O (2011) Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat Protoc 6:1341–1354CrossRefGoogle Scholar
  33. 33.
    Hatada E, Hasegawa M, Mukaigawa J, Shimizu K, Fukuda R (1989) Control of influenza virus gene expression: quantitative analysis of each viral RNA species in infected cells. J Biochem 105:537–546CrossRefGoogle Scholar
  34. 34.
    Meyerson NR, Zhou L, Guo YR, Zhao C, Tao YJ, Krug RM, Sawyer SL (2017) Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe 22(627–638):e627CrossRefGoogle Scholar
  35. 35.
    Zheng X, Wang X, Tu F, Wang Q, Fan Z, Gao G (2017) trim25 is required for the antiviral activity of zinc finger antiviral protein. J Virol 91:e00088-17CrossRefGoogle Scholar
  36. 36.
    Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y, Sun J, Wu L, Zheng YT, Gao G (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA 108:15834–15839CrossRefGoogle Scholar
  37. 37.
    Guo X, Carroll JW, Macdonald MR, Goff SP, Gao G (2004) The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol 78:12781–12787CrossRefGoogle Scholar
  38. 38.
    Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA 104:151–156CrossRefGoogle Scholar
  39. 39.
    Zhu Y, Wang X, Goff SP, Gao G (2012) Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J 31:4236–4246CrossRefGoogle Scholar
  40. 40.
    Thierry E, Guilligay D, Kosinski J, Bock T, Gaudon S, Round A, Pflug A, Hengrung N, El Omari K, Baudin F, Hart DJ, Beck M, Cusack S (2016) Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol Cell 61:125–137CrossRefGoogle Scholar
  41. 41.
    Long JX, Wang QZ, Lu JH, Liu YL, Liu XF (2005) [Cloning of full-length genes of H5N1 subtype Avian influenza virus strain A/duck/Shandong/093/2004 and analysis of the sequences]. Wei sheng wu xue bao = Acta microbiologica Sinica 45:690–696Google Scholar
  42. 42.
    Zhao B, Zhang X, Zhu W, Teng Z, Yu X, Gao Y, Wu D, Pei E, Yuan Z, Yang L, Wang D, Shu Y, Wu F (2014) Novel avian influenza A(H7N9) virus in tree sparrow, Shanghai, China, 2013. Emerg Infect Dis 20:850–853CrossRefGoogle Scholar
  43. 43.
    El Houadfi M, Fellahi S, Nassik S, Guerin JL, Ducatez MF (2016) First outbreaks and phylogenetic analyses of avian influenza H9N2 viruses isolated from poultry flocks in Morocco. Virol J 13:140CrossRefGoogle Scholar
  44. 44.
    Beerens N, Koch G, Heutink R, Harders F, Vries DPE, Ho C, Bossers A, Elbers A (2018) Novel highly pathogenic avian influenza A(H5N6) virus in the Netherlands, December 2017. Emerg Infect Dis 24:770–773CrossRefGoogle Scholar
  45. 45.
    Mi Z, Liu W, Fan H, An X, Pei G, Wang W, Xu X, Ma M, Zhang Z, Cao W, Tong Y (2013) Complete genome sequence of avian influenza virus A/chicken/Jiangsu/1001/2013(H5N2), demonstrating continuous reassortance of H5N2 in China. Genome Announc 1:e00469-13CrossRefGoogle Scholar
  46. 46.
    Gao Z, Hu J, Liang Y, Yang Q, Yan K, Liu D, Wang X, Gu M, Liu X, Hu S, Hu Z, Liu H, Liu W, Chen S, Peng D, Jiao XA, Liu X (2017) Generation and comprehensive analysis of host cell interactome of the PA protein of the highly pathogenic H5N1 avian influenza virus in mammalian cells. Front Microbiol 8:739CrossRefGoogle Scholar
  47. 47.
    Baker SF, Ledwith MP, Mehle A (2018) Differential splicing of ANP32A in birds alters its ability to stimulate RNA synthesis by restricted influenza polymerase. Cell Rep 24(2581–2588):e2584Google Scholar
  48. 48.
    Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crepin T, Hart D, Lunardi T, Nanao M, Ruigrok RW, Cusack S (2014) Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516:361–366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Xiuli Wei
    • 1
    • 2
  • Zhixin Liu
    • 1
  • Jingjie Wang
    • 1
  • Ruiping Yang
    • 3
  • Jing Yang
    • 1
  • Yang Guo
    • 1
  • Huabing Tan
    • 2
  • Hongying Chen
    • 4
  • Qiang Liu
    • 5
  • Long Liu
    • 1
    • 2
    Email author
  1. 1.School of Basic Medical SciencesHubei University of MedicineShiyanChina
  2. 2.Department of Infectious Diseases, Renmin HospitalHubei University of MedicineShiyanChina
  3. 3.Biomedical Research InstituteHubei University of MedicineShiyanChina
  4. 4.College of Life SciencesNorthwest A&F UniversityYanglingChina
  5. 5.The First College of Clinical Medical ScienceChina Three Gorges University/Yichang Central People’s HospitalYichangChina

Personalised recommendations