Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Climate control on snowfall days in peninsular Italy

  • 22 Accesses

Abstract

The advent of instrumental and digital weather observatories has not eliminated the substantial gaps within surface meteorological time series. In particular, the lack of long-term homogeneous snowfall records may be a major impediment for hydrologic studies. We tested the hypothesis that reliable estimates of snowy days per year (SDY) can be produced for peninsular Italy, based on weather and site measurements from a limited set of stations centrally located in the Central Mediterranean Area. The core weather data are those from three observatories: Naples (40° 51′ N, 14° 15′ E, 150 m a.s.l.), Rome (41° 53′ N, 12° 28′ E, 100 m a.s.l.) and Montevergine (40° 56′ N, 14° 43′ E, 1280 m a.s.l.). A linear multivariate regression model (LMRM) was developed with candidate predictors (elevation, snowfall days and winter temperatures) for SDY reconstructions in the Benevento Valley (calibration site), whose homogenised SDY time series covers the period 1869–2018 (the longest in Southern Italy, extending back to 1832 thanks to documentary proxies but with missing values from 1911 to 1949). Three validation sites across peninsular Italy were considered: Vesuvius (40° 49′ N, 14° 24′ E, 605 m a.s.l.), Perugia (43° 05′ N, 12° 30′ E, 205 m a.s.l.) and Padua (45° 23′ N, 11° 51′ E, 15 m a.s.l.). The percent relative mean absolute error (%RMAE) for Benevento Valley was 20.2%, and though higher model errors were encountered at validation sites, they were in an acceptable range (32.6, 39.3 and 39.5% at Vesuvius, Perugia and Padua, respectively). Our SDY reconstruction in the Benevento Valley parallels, the pattern of water discharge occurred in the region during the same period, whose fluctuations result in changes of the pattern of snowfall days (i.e. decreasing snowfall days in recent times was accompanied by decreasing groundwater levels). This corroborates that the approach used to reconstruct SDY data takes dominant climate controlling factors of hydrological changes. We conclude that the LMRM, a statistically developed model, is physically meaningful and may be reasonably used for estimating SDY in peninsular Italy roughly down from the sub-Alpine range.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Andreotti Majo E (1958) Le nevicate a Napoli. Bollettino della Società dei Naturalisti in Napoli 67:1–11 (in Italian)

  2. Bednorz E (2004) Snow cover in eastern Europe in relation to temperature, precipitation and circulation. Int J Climatol 24:591–601. https://doi.org/10.1002/joc.1014

  3. Brown RD, Petkova N (2007) Snow cover variability in Bulgarian mountainous regions, 1931-2000. Int J Climatol 27:1215–1229. https://doi.org/10.1002/joc.1468

  4. Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27. https://doi.org/10.1016/0022-1694(82)90066-X

  5. Camuffo D (1984) Analysis of series of precipitation at Padova, Italy. Clim Chang 6:57–77. https://doi.org/10.1007/BF00141668

  6. Clark MP, Serreze MC, Robinson DA (1999) Atmospheric controls on Eurasian snow extent. Int J Climatol 19:27–40. https://doi.org/10.1002/(SICI)1097-0088(199901)19:1<27::AID-JOC346>3.0.CO;2-N

  7. Comas-Bru L, McDermott F (2004) Impacts of the EA and SCA patterns on the European twentieth century NAO—winter climate relationship. Q J R Meteorol Soc 140:354–363. https://doi.org/10.1002/qj.2158

  8. Croce P, Formichi P, Landi F, Mercogliano P, Bucchignani E, Dosio A, Dimova S (2018) The snow load in Europe and the climate change. Clim Risk Manag 20:138–154. https://doi.org/10.1016/j.crm.2018.03.001

  9. Dafis S, Lolis CJ, Houssos EE, Bartzokas A (2016) The atmospheric circulation characteristics favouring snowfall in an area with complex relief in northwestern Greece. Int J Climatol 36:3561–3577. https://doi.org/10.1002/joc.4576

  10. De Walle D, Rango A (2008) Principles of snow hydrology. Cambridge University Press, Cambridge

  11. Diodato N (1995) Montevergine: unica vedetta storica dell’Appennino fondata per mezzo di Padre Francesco Denza. Boll Geofisico 18:47–51 (in Italian)

  12. Diodato N (1997) Paesaggi d’inverno: Aspetti naturalistici e climatologici delle nevicate sulla Campania interna. La Provincia Sannita, vol. 17, Bollettino Geofisico (in Italian)

  13. Diodato N, Bellocchi G (2007) Estimating monthly (R)USLE climate input in a Mediterranean region using limited data. J Hydrol 345:224–236. https://doi.org/10.1016/j.jhydrol.2007.08.008

  14. Diodato N, Bellocchi G (2018) Using historical precipitation patterns to forecast daily extremes of rainfall for the coming decades in Naples (Italy). Geosciences 8. https://doi.org/10.3390/geosciences8080293

  15. Diodato N, Bellocchi G, Fiorillo F, Ventafridda G (2017) Case study for investigating groundwater and the future of mountain spring discharges in Southern Italy. J Mt Sci 14:1791–1800. https://doi.org/10.1007/s11629-017-4445-5

  16. Diodato N, Büntgen U, Bellocchi G (2019) Mediterranean winter snowfall variability over the past millennium. Int J Climatol 39:384–394. https://doi.org/10.1002/joc.5814

  17. Enzi S, Bertolin C, Diodato N (2014) Snowfall time-series reconstruction in Italy over the last 300 years. Holocene 24:346–356. https://doi.org/10.1177/0959683613518590

  18. Favaro GA (1913) Valori normali dei principali elementi del clima di Padova. Atti e Memories of the Royal Academy of Sciences, Letters and Arts in Padua, 1905–1906, New Series 22:235–250. (in Italian)

  19. Fernández-González S, Valero F, Sánchez JL, Gascón E, López L, García-Ortega E, Merino A (2013) Numerical simulations of snowfall events: sensitivity analysis of physical parameterizations. J Geophys Res Atmos 120:130–148. https://doi.org/10.1002/2015JD023793

  20. Flammarion C (1879) L’atmosfera: Descrizione dei grandi fenomeni della natura, 3rd vol. Nabu Press, Milan (in Italian)

  21. Foppa N, Seiz G (2012) Inter-annual variations of snow days over Switzerland from 2000-2010 derived from MODIS satellite data. Cryosphere 6:331–342. https://doi.org/10.5194/tc-6-331-2012

  22. Ge Y, Gong G (2008) Observed inconsistencies between snow extent and snow depth variability at regional/continental scales. J Clim 21:1066–1082. https://doi.org/10.1175/2007JCLI1829.1

  23. Hasanean H (2004) Precipitation variability over the Mediterranean and its linkage with El Nino Southern Oscillation (ENSO). J Meteorol 29:151–160

  24. Jennings KS, Winchell TS, Livneh B, Molotoch NP (2018) Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat Commun 9:1148. https://doi.org/10.1038/s41467-018-03629-7

  25. Kretschmer M, Coumou D, Agel L, Barlow M, Tziperman E, Cohen J (2018) More persistent weak stratospheric polar vortex states linked to cold extremes. Bull Am Meteorol Soc 99:49–60. https://doi.org/10.1175/BAMS-D-16-0259.1

  26. Liu H, Bao A, Chen X, Wang L and Pan X (2011) Response analysis of rainfall–runoff processes using wavelet transform: a case study of the alpine meadow belt. Hydrol Process 25:2179–2187. https://doi.org/10.1002/hyp.7969

  27. Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic Sea ice on winter snowfall. Proc Natl Acad Sci U S A 109:4074–4079. https://doi.org/10.1073/pnas.1114910109

  28. López-Moreno JI, Vicente-Serrano SM, Morán-Tejeda E, Lorenzo-Lacruz J, Zabalza J, El Kenawy A, Beniston M (2011) Influence of winter North Atlantic Oscillation index (NAO) on climate and snow accumulation in the Mediterranean mountains. In: Vicente-Serrano SM, Tirgao R (eds) Hydrological, socioeconomic and ecological impacts of the North Atlantic oscillation in the Mediterranean region. Springer, Dordrecht, pp 73–89

  29. Lute AC, Abatzoglou JT, Hegewisch KC (2015) Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour Res 51:960–972. https://doi.org/10.1002/2014WR016267

  30. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561. https://doi.org/10.1007/s00382-001-0196-6

  31. Malladra A (1914) La pioggia sul Vesuvio nel periodo 1863–1913. Società Tipografica Modenese, Modena (in Italian)

  32. Mangianti F, Beltrano MC (1991) La neve a Roma dal 1741 al 1990. Italian Ministry of Agriculture and Forestry - Central Bureau of Agricultural Ecology, Rome (in Italian)

  33. Martín JR, García MM, de Pablo DF, Soriano LR (2013) Severe rainfall events over the western Mediterranean Sea: a case study. Atmos Res 127:47–63. https://doi.org/10.1016/j.atmosres.2013.03.001

  34. Mennella C (1967) Il clima d’Italia. Fratelli Conte Editori, Naples (in Italian)

  35. Mercalli L, Di Napoli G (2008) Il clima di Torino. Subalpine Meteorological Society, Turin (in Italian)

  36. Merino A, Fernández S, Hermida L, López L, Sánchez JL, García-Ortega E, Gascón E (2014) Snowfall in the Northwest Iberian Peninsula: synoptic circulation patterns and their influence on snow day trends. Sci World J:480275. https://doi.org/10.1155/2014/480275

  37. Nels J (2017) The effects of topography on the climate. Sciencing https://sciencing.com/the-effects-of-topography-on-the-climate-12508802.html. Accessed 08 June 2019

  38. Pandolfi AM, Lorenzetti MC (1996) Due secoli di nevicate a Perugia: Analisi preliminare. Nimbus 4:55–57 (in Italian)

  39. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405. https://doi.org/10.1007/s00382-005-0090-8

  40. Pérez-Palazón MJ, Pimentel R, Herrero J, Aguilar C, Perales JM, Polo MJ (2015) Extreme values of snow-related variables in Mediterranean regions: trends and long-term forecasting in Sierra Nevada (Spain). Proceedings of the International Association of Hydrological Sciences 369:157–162. https://doi.org/10.5194/piahs-369-157-2015

  41. Quattromani G (1827) Itinerario delle Due Sicilie. Dalla Reale Tipografia della Guerra, Naples (in Italian)

  42. Royston P, Sauerbrei W (2008) Multivariate model-building. Wiley, Chichester

  43. Rysman J-F, Lemaître Y, Moreau E (2016) Spatial and temporal variability of rainfall in the Alps-Mediterranean Euroregion. J Appl Meteorol Climatol 55:655–671. https://doi.org/10.1175/JAMC-D-15-0095.1

  44. Schiaparelli GV (1868) Sul clima di Vigevano risultati di osservazioni fatte in questa città per 38 anni (1827–1864) dal cavaliere dott. Siro Serafini. Vallardi, Milan. (in Italian)

  45. Serquet G, Marty C, Rebetez M (2013) Monthly trends and the corresponding altitudinal shift in the snowfall/precipitation day ratio. Theor Appl Climatol 114:437–444. https://doi.org/10.1007/s00704-013-0847-7

  46. Shannon HD, Motha RP (2015) Managing weather and climate risks to agriculture in North America, Central America and the Caribbean. Weather Clim Extrem 10:50–56. https://doi.org/10.1016/j.wace.2015.10.006

  47. Tague C, Grant GE (2009) Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions. Water Resour Res 49:W07421. https://doi.org/10.1029/2008WR007179

  48. Talli NM (1847) Statistica sinottica delle meteore osservate nell’atmosfera di Lanciano nel decennio 1834-1843. Annali Civili del Regno delle Due Sicilie 85:53–71 (in Italian)

  49. Terzago S, Fratianni S, Cremonini R (2013) Winter precipitation in Western Italian Alps (1926-2010): trends and connections with the North Atlantic/Arctic Oscillation. Meteorog Atmos Phys 119:125–136. https://doi.org/10.1007/s00703-012-0231-7

  50. Van der Knijff JM, Jones RJA, Montanarella L (2000) Soil erosion risk assessment in Europe. EUR 19044 EN, European Soil Bureau, Space Application Institute, Joint Research Centre, Ispra

  51. Wang D, Alimohammadi N (2012) Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resour Res 48:W05546. https://doi.org/10.1029/2011WR011444

  52. Wang X, Wu C, Wang H, Gonsamo A, Liu Z (2017) No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000-2015. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-15208-9

  53. Wang Y, Yang J, Chen Y, Wang A, De Maeyer P (2018) The spatiotemporal response of soil moisture to precipitation and temperature changes in an arid region, China. Remote Sens 10:468. https://doi.org/10.3390/rs10030468

  54. WMO (2009) Handbook on climate and climate temp reporting (TD 1188). World Meteorological Organisation, Geneva

Download references

Acknowledgements

This was an investigator-driven study without financial support.

Author information

Correspondence to Gianni Bellocchi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diodato, N., Bellocchi, G. Climate control on snowfall days in peninsular Italy. Theor Appl Climatol (2020). https://doi.org/10.1007/s00704-020-03136-0

Download citation