Advertisement

Influence of the bandwidth in the harmonic search to optimize the mixed univariate Gumbel function

  • Juan Pablo Molina–AguilarEmail author
  • M. Alfonso Gutiérrez–López
Original Paper
  • 10 Downloads

Abstract

Different regions of Mexico are affected temporarily by tropical cyclones whose evidence is reflected in the record of annual maximum flows of stream gages. The statistical analysis of these records presents two different trends represented by the Gumbel mixed distribution function. In order to achieve a reliable character of the historical information, it is necessary to determine the parameters of the function; therefore, the present work shows its optimization by means of the metaheuristic technique harmonic search verifying the influence of the bandwidth parameter in the solution. It was observed that the arithmetic expressions that define the bandwidth generate a better performance with respect to those that include exponential or logarithms. It is concluded that the technique achieves the optimization of the five parameters of the univariate Gumbel mixed function in an agile way, in particular the probability and the non-cyclonic elements, decreasing the adjustment error generated with respect to the classical methodologies, which improves upon having extensive historical records.

Notes

Acknowledgments

The authors thank Dr. Ramón Gerardo Guevara-Gonzalez for the comments and observations made in the revision of this article before submitting.

References

  1. Calixto L (2013) Análisis de frecuencias con distribuciones conjuntas para el estado de Querétaro. Tesis para obtener el título de Ingeniero Civil. Facultad de Ingeniería. Universidad Autónoma de Querétaro. México. P. 139Google Scholar
  2. Campos A (1989) Estimación de los parámetros óptimos de la distribución Gumbel mixta por medio del algoritmo de Rosenbrock. Ingeniería Hidráulica en México, IV (1): 9-18Google Scholar
  3. Castillo E (1988) Extreme value theory in engineering. Academic Press, Boston. USAGoogle Scholar
  4. Cobos C, Pérez J, Estupiñan D (2011) Una revisión de la búsqueda Armónica. Revista Avances en sistemas e Informática, 8(2). Medellín, ColombiaGoogle Scholar
  5. Escalante-Sandoval C (1988) Multivariate extreme value distribution with mixed Gumbel marginals. J Am Water Resour Assoc 34(2):321–333.  https://doi.org/10.1111/j.1752-1688.1998.tb04138.x CrossRefGoogle Scholar
  6. Escalante-Sandoval C (2007) A mixed distribution with EV1 and GEV components for analyzing heterogeneous samples. Ingeniería, Investigación y Tecnología 8(2):123–133.  https://doi.org/10.22201/fi.25940732e.2007.08n3.011 CrossRefGoogle Scholar
  7. Escalante-Sandoval C (2013) Estimation of extreme wind speeds by using mixed distributions. Ingeniería Investigación y Tecnología XIV(2):153–162Google Scholar
  8. Fiacco A, Mccormick G, (1968) Nonlinear programming: sequential unconstrained minimization techniques. (8): Computational aspects of unconstrained minimization algorithms. p. 156 – 196. John Wiler and Sons Inc. Nueva York. EUAGoogle Scholar
  9. Fuentes M, Arganis J, Domínguez M, Fuentes M, Rodríguez K (2015) Maximización de la función de Verosimilitud de Distribuciones de Probabilidad usando Algoritmos Genéticos. Ingeniería del Agua 19(1):17.  https://doi.org/10.4995/ia.2015.3225 CrossRefGoogle Scholar
  10. Geem Z (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38Google Scholar
  11. Geem Z (2009a) Harmony search algorithms for structural design optimization, in Studies in Computacional Intelligence, v. 239. Springer Berlin Heidelberg: Berlin, Heidelberg p. 228Google Scholar
  12. Geem Z (2009b) Music-inspired harmony search algorithm. Stud Comput Intell.  https://doi.org/10.1007/978-3-642-00185-7
  13. Geem Z (2009c) Optimal cost design of water distribution networks using harmony search. Eng Optim 38(3):259–277.  https://doi.org/10.1080/03052150500467430 CrossRefGoogle Scholar
  14. Geem Z, Kim J, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68.  https://doi.org/10.1177/003754970107600201 CrossRefGoogle Scholar
  15. Geem, et al (2008) Recent advances in harmony search. Advances in Evolutionary Algorithms. P. 16Google Scholar
  16. Gómez J, Aparicio J, Patiño C (2010) Manual de análisis de Frecuencias en hidrología. Instituto Mexicano de Tecnología del Agua. Jiutepec, Morelos, MéxicoGoogle Scholar
  17. González-Villareal F (1970) Contribución al análisis de frecuencias de valores extremos de los gastos máximos en un río. Instituto de Ingeniería de la UNAM núm. 277, 24 pp, México, D.F.Google Scholar
  18. Jenkinson A (1969) Estimation of maximum floods. World Meteorological Organization, Technical Note No. 98, Ch. 5, pp. 183-257Google Scholar
  19. Koutsoyiannis D (2003) On the appropriateness of the Gumbel distribution for modelling extreme rainfall. Hydrological Risk: recent advances in peak river flow modelling, prediction and real-time forecasting. Assessment of the impacts of land-use and climate changes. Edited by A. Brath, A. Montanari, and E. Toth, Bologna, 303–319, Editorial Bios, Castrolibero, Italy  https://doi.org/10.13140/RG.2.1.3811.6080
  20. Lee K, Geem Z (2005) A new meta – heuristic algoritm for continuos engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933CrossRefGoogle Scholar
  21. Lee K, Geem Z, Lee S, Bae K (2005) The harmony search heuristic algorithm for discrete structural optimization. Eng Optim 37(7):663–684.  https://doi.org/10.1080/03052150500211895 CrossRefGoogle Scholar
  22. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579.  https://doi.org/10.1016/j.amc.2006.11.033 CrossRefGoogle Scholar
  23. Montoya J, Figueroa G, Pukšic N (2013) Profile likelihood estimation of the vulnerability P(X>v) and the mixing proportion p parameters in the Gumbel mixture model. Revista Colombiana de Estadística 36(2):193–208Google Scholar
  24. Mood A, Graybill F, Boes D (1974) Introduction to the theory of statistics, 3rd. edn. McGraw-Hill, USAGoogle Scholar
  25. Mukhopadhyay A, Roy A, Das S, Abraham A (2008) Population-variance and explorative power of harmony search: an analysis. In: Second national conference on mathematical techniques emerging paradigms for electronics and IT industries (MATEIT 2008), New Delhi, IndiaGoogle Scholar
  26. Omran M, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198(2):643–656.  https://doi.org/10.1016/j.amc.2007.09.004 CrossRefGoogle Scholar
  27. Ramírez A, Aldama A (2000) Análisis de frecuencia conjunto para la estimación de avenidas de diseño. AMH-IMTA.Google Scholar
  28. Raynal V (1986) La distribución general de valores extremos en hidrología: 2. Estado actual y aplicaciones. VIII Congreso Nacional de Hidráulica. Tema B: La Hidráulica en la Producción de Alimentos. Tomo I. p. B.9 – B. 19. Toluca, Estado de MéxicoGoogle Scholar
  29. Raynal J, Guevara J (1997) Maximum likelihood estimators for the two populations Gumbel distribution. Hydrol Sci Technol 13(1-4):47–56Google Scholar
  30. Raynal-Villasenor J (2012) Maximum likelihood parameter estimators for the two populations GEV distribution. IJRRAS 11(3)Google Scholar
  31. Tartaglia V, Caporali E, Cavigli E, Moro A (2006) L-moments based assessment of a mixture model for frequency analysis of rainfall extremes. Adv Geosci 2:331–334.  https://doi.org/10.5194/adgeo-2-331-2006 CrossRefGoogle Scholar
  32. Vázquez C (2016) Composición en una Sociedad de Músicos. Tesis para obtener el grado de Maestro en Optimización. Posgrado en Optimización. Universidad Autónoma Metropolitana – AzcapotzalcoGoogle Scholar
  33. Wang C, Huang Y (2010) Self-adaptive harmony search algorithm for optimization. Expert Syst Appl 37(4):2826–2837.  https://doi.org/10.1016/j.eswa.2009.09.008 CrossRefGoogle Scholar
  34. Waylen P, Caviedes C (1986) El Niño and annual floods on the north Peruvan Litoral. J Hydrol 89(1–2):141–156CrossRefGoogle Scholar
  35. Yang X (2009) Harmony search as a metaheuristic algorithm, in Music-Inspired Harmony Search Algorithm Springer Berlin / Heidelberg, p. 1 – 14Google Scholar
  36. Zou D, Gao L, Wu J, Li S, Li Y (2010) A novel global harmony search algorithm for reliability problems. Comput Ind Eng 58(2):307–316.  https://doi.org/10.1016/j.cie.2009.11.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.División de Investigación y Posgrado, Facultad de IngenieríaUniversidad Autónoma de QuerétaroSantiago de QuerétaroMéxico
  2. 2.Centro de Investigaciones del Agua, Facultad de IngenieríaUniversidad Autónoma de QuerétaroSantiago de QuerétaroMéxico

Personalised recommendations