Advertisement

The changes of high-temperature extremes and their links with atmospheric circulation over the Northern Hemisphere

  • Lisuo Hu
  • Gang HuangEmail author
Original Paper
  • 42 Downloads

Abstract

The present study investigated the changes of high-temperature extremes and their links with atmospheric circulation over the Northern Hemisphere during 1979–2012 based on daily records of maximum temperature and geopotential height fields. We mainly used the 90th percentile of daily maximum temperatures as a threshold to identify hot day. The number of hot days (NHD) shows significant increasing trends over the East Asia (EA), Mediterranean (TM), and United States of America (USA) from 1979 to 2012, suggesting that these regions may suffer from increasing high-temperature extremes The regional mean linear trend over EA is 0.18 days/year and showed an increase in 1996, with the maximum trends in Mongolian Plateau and Loess Plateau. In the TM region, NHD increased with a rate of 0.35 days/year and showed an increase in 1997, and most significant trend was found in the Arabian Peninsula. In the USA, the NHD had a significant inter-annual variability and increased with a rate of 0.1 days/year. Moreover, high-temperature extremes over most parts of the three regions are associated with barotropical anticyclonic anomalies and subsidence, which may enhance solar radiation to surface.

Notes

Funding

This work was supported by the National Natural Science Foundation of China (41425019, 41831175, and 41721004).

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Tank A, ... Vazquez-Aguirre JL (2006). Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res-Atmos, 111(D5). doi:  https://doi.org/10.1029/2005jd006290
  2. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244.  https://doi.org/10.1126/science.1164363 CrossRefGoogle Scholar
  3. Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59 (8):217–223.  https://doi.org/10.1256/wea.74.04
  4. Bouchama A (2004) The 2003 European heat wave. Intensive Care Med 30(1):1–3CrossRefGoogle Scholar
  5. Chen R, Lu R (2015) Comparisons of the circulation anomalies associated with extreme heat in different regions of Eastern China. J Clim 28(14):5830–5844.  https://doi.org/10.1175/jcli-d-14-00818.1 CrossRefGoogle Scholar
  6. Choi G, Collins D, Ren G, Trewin B, Baldi M, Fukuda Y, Afzaal M, Pianmana T, Gomboluudev P, Huong PTT, Lias N, Kwon WT, Boo KO, Cha YM, Zhou Y (2009) Changes in means and extreme events of temperature and precipitation in the Asia-Pacific network region, 1955-2007. Int J Climatol 29(13):1906–1925.  https://doi.org/10.1002/joc.1979 CrossRefGoogle Scholar
  7. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496.  https://doi.org/10.1038/nclimate1452 CrossRefGoogle Scholar
  8. Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J R Meteorol Soc 135(644):1830–1841.  https://doi.org/10.1002/qj.493 CrossRefGoogle Scholar
  9. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  10. Diaz J, Garcia R, de Castro FV, Hernandez E, Lopez C, Otero A (2002) Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int J Biometeorol 46(3):145–149.  https://doi.org/10.1007/s00484-002-0129-z CrossRefGoogle Scholar
  11. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan XW, Xu T Murray D (2011). Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett, 38. doi:  https://doi.org/10.1029/2010gl046582,
  12. Dong B, Sutton RT, Shaffrey L (2016) Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Clim Dyn 48:1–18.  https://doi.org/10.1007/s00382-016-3158-8 Google Scholar
  13. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074.  https://doi.org/10.1126/science.289.5487.2068 CrossRefGoogle Scholar
  14. Gershunov A, Cayan DR, Iacobellis SF (2009) The great 2006 heat wave over California and Nevada: signal of an increasing trend. J Clim 22:6181–6203.  https://doi.org/10.1175/2009JCLI2465.1 CrossRefGoogle Scholar
  15. Gu S, Huang C, Bai L, Chu C, Liu Q (2016) Heat-related illness in China, summer of 2013. Int J Biometeorol 60(1):131–137.  https://doi.org/10.1007/s00484-015-1011-0 CrossRefGoogle Scholar
  16. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103(39):14288–14293.  https://doi.org/10.1073/pnas.0606291103 CrossRefGoogle Scholar
  17. Harpaz T, Ziv B, Saaroni H, Beja E (2014) Extreme summer temperature in the East Mediterranean—dynamical analysis. Int J Climatol 34:849–862.  https://doi.org/10.1002/joc.3727 CrossRefGoogle Scholar
  18. Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS (2015) Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522(7557):465–469.  https://doi.org/10.1038/nature14550 CrossRefGoogle Scholar
  19. Hu L, Huang G, Hu K (2018) The performance of multiple datasets in characterizing the changes of extreme air temperature over China during 1979 to 2012. Theor Appl Climatol 133(1):619–632.  https://doi.org/10.1007/s00704-017-2215-5 CrossRefGoogle Scholar
  20. IPCC (2013). The physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed T Stocker et al. Cambridge University Press, CambridgeGoogle Scholar
  21. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20(8):1419–1444.  https://doi.org/10.1175/jcli4066.1 CrossRefGoogle Scholar
  22. Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55CrossRefGoogle Scholar
  23. Leechiong TL, Stitt JT (1995) Heatstroke and other heat-related illnesses—the maladies of summer. Postgrad Med 98(1):26–36CrossRefGoogle Scholar
  24. Loikith PC, Broccoli AJ (2012) Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J Clim 25:7266–7281.  https://doi.org/10.1175/JCLI-D-11-00709.1 CrossRefGoogle Scholar
  25. Luber G, McGeehin M (2008) Climate change and extreme heat events. Am J Prev Med 35(5):429–435.  https://doi.org/10.1016/j.amepre.2008.08.021 CrossRefGoogle Scholar
  26. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997.  https://doi.org/10.1126/science.1098704 CrossRefGoogle Scholar
  27. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712.  https://doi.org/10.1002/joc.1181 CrossRefGoogle Scholar
  28. Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong XH, ... Cassman KG (2004). Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A, 101(27), 9971–9975. doi:  https://doi.org/10.1073/pnas.0403720101
  29. Perkins SE, Pitman AJ, Sisson SA (2013) Systematic differences in future 20 year temperature extremes in AR4 model projections over Australia as a function of model skill. Int J Climatol 33(5):1153–1167.  https://doi.org/10.1002/joc.3500 CrossRefGoogle Scholar
  30. Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31:L09204.  https://doi.org/10.1029/2004GL019448 CrossRefGoogle Scholar
  31. Schar C, Jendritzky G (2004) Climate change: hot news from summer 2003. Nature 432(7017):559–560.  https://doi.org/10.1038/432559a CrossRefGoogle Scholar
  32. Valor E, Meneu V, Caselles V (2001) Daily air temperature and electricity load in Spain. J Appl Meteorol 40(8):1413–1421CrossRefGoogle Scholar
  33. Weedon GP, Balsamo G, Bellouin N, Gomes S, Best MJ, Viterbo P (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour Res 50(9):7505–7514.  https://doi.org/10.1002/2014wr015638 CrossRefGoogle Scholar
  34. Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Oesterle H, ... Best M (2011). Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol, 12(5), 823–848. doi:  https://doi.org/10.1175/2011jhm1369.1
  35. WMO (2013). The global climate 2001–2010: a decade of climate extremes. World Meteorological Organization Rep. 1103, 119pp. (Available online at https://library.wmo.int/pmb_ged/wmo_1119_en.pdf)
  36. You Q, Kang S, Aguilar E, Pepin N, Fluegel W-A, Yan Y et al (2011) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003. Clim Dyn 36(11–12):2399–2417.  https://doi.org/10.1007/s00382-009-0735-0 CrossRefGoogle Scholar
  37. Zaitchik BF, Macalady AK, Bonneau LR, Smith RB (2006) Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int J Climatol 26:743–769.  https://doi.org/10.1002/joc.1280 CrossRefGoogle Scholar
  38. Zhao Y, Ducharne A, Sultan B, Braconnot P, and Vautard R (2015). Estimating heat stress from climate-based indicators: present-day biases and future spreads in the CMIP5 global climate model ensemble. Environ Res Lett, 10(8). doi:  https://doi.org/10.1088/1748-9326/10/8/084013
  39. Zhao Y, Sultan B, Vautard R, Braconnot P, Wang HJ, Ducharne A (2016) Potential escalation of heat-related working costs with climate and socioeconomic changes in China. Proc Natl Acad Sci U S A 113(17):4640–4645.  https://doi.org/10.1073/pnas.1521828113 CrossRefGoogle Scholar
  40. Ziv B, Saaroni H, Alpert P (2004) The factors governing the summer regime of the eastern Mediterranean. Int J Climatol 24:1859–1871.  https://doi.org/10.1002/joc.1113 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations