Advertisement

Dominant modes of CMIP3/5 models simulating northwest Pacific circulation anomalies during post-ENSO summer and their SST dependence

  • Weichen Tao
  • Gang HuangEmail author
  • Pengfei Wang
  • Yang Liu
  • Guanhuan Wen
  • Danhong Dong
Original Paper
  • 11 Downloads

Abstract

Based on an intermodel empirical orthogonal function (EOF) analysis, this study has investigated the dominant modes of northwest Pacific (NWP) circulation anomalies during post-ENSO summer and their SST dependence involved in 47 Coupled Model Intercomparison Project phase 3 and phase 5 models. The first EOF mode, explaining 33.3% of total intermodel variance, features an anomalous cyclone over the tropical NWP and is controlled by the positive SST anomalies over the equatorial western Pacific (WP). The equatorial WP warming enhances local convection with lower- (upper-) level convergence (divergence), and the anomalous cyclone is a direct Rossby wave response to positive rainfall anomalies there. The second EOF mode, explaining 24.6% of total intermodel variance, is characterized by an anomalous NWP anticyclone (NWPAC). The related SST anomalies show warming in the tropical Indian Ocean (TIO) and equatorial central and eastern Pacific (CEP) and cooling in the NWP. The TIO (CEP) warming induces local wet anomalies, which trigger eastward (westward) Kelvin (Rossby) wave, resulting the adjustment of large-scale circulation. The resultant lower- (upper-) level divergence (convergence) suppresses convection over the NWP, inducing the anomalous NWPAC as a Rossby wave response. The NWP cooling influences NWPAC via positive thermodynamic feedback between local SST and circulation anomalies. Model results further confirm the role of leading mode-related SST anomalies affecting the simulation of NWP circulation.

Notes

Acknowledgments

We acknowledge the World Climate Research Program’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank two anonymous reviewers as well as the editor for their useful comments. This work was supported by the National Natural Science Foundation of China (41425019, 41831175, 41721004, and 41705068), the China Postdoctoral Science Foundation (2016LH0005 and 2016M600116), and the Natural Science Foundation of Guangdong Province (2016A030310009).

References

  1. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42(7–8):1999–2018.  https://doi.org/10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  2. Chang CP, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: meridional structure of the monsoon. J Clim 13(24):4326–4340.  https://doi.org/10.1175/1520-0442(2000)013<4326:iaivot>2.0.co;2 CrossRefGoogle Scholar
  3. Chen X, Zhou T (2014) Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J Geophys Res-Atmos 119(23):2014JD022064.  https://doi.org/10.1002/2014jd022064 CrossRefGoogle Scholar
  4. Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3(3):249–266.  https://doi.org/10.1175/1525-7541(2002)003<0249:glpaym>2.0.co;2 CrossRefGoogle Scholar
  5. Chen Z, Wen Z, Wu R, Zhao P, Cao J (2014) Influence of two types of El Niños on the East Asian climate during boreal summer: a numerical study. Clim Dyn 43(1–2):469–481.  https://doi.org/10.1007/s00382-013-1943-1 CrossRefGoogle Scholar
  6. Chen Z, Wen Z, Wu R, Lin X, Wang J (2016) Relative importance of tropical SST anomalies in maintaining the Western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Clim Dyn 46(3):1027–1041.  https://doi.org/10.1007/s00382-015-2630-1 CrossRefGoogle Scholar
  7. Chen Z, Wen Z, Wu R, Du Y (2017) Roles of tropical SST anomalies in modulating the western north Pacific anomalous cyclone during strong La Niña decaying years. Clim Dyn 49(1):633–647.  https://doi.org/10.1007/s00382-016-3364-4 CrossRefGoogle Scholar
  8. Chiang JCH, Sobel AH (2002) Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J Clim 15(18):2616–2631.  https://doi.org/10.1175/1520-0442(2002)015<2616:tttvcb>2.0.co;2 CrossRefGoogle Scholar
  9. Chowdary JS, Gnanaseelan C (2007) Basin-wide warming of the Indian Ocean during El Nino and Indian Ocean dipole years. Int J Climatol 27(11):1421–1438.  https://doi.org/10.1002/joc.1482 CrossRefGoogle Scholar
  10. Chowdary JS, Xie SP, Luo JJ, Hafner J, Behera S, Masumoto Y, Yamagata T (2011) Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Clim Dyn 36(3–4):607–621.  https://doi.org/10.1007/s00382-009-0686-5 CrossRefGoogle Scholar
  11. Chowdary JS, Parekh A, Kakatkar R, Gnanaseelan C, Srinivas G, Singh P, Roxy MK (2016) Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall. Clim Dyn 47(3):831–844.  https://doi.org/10.1007/s00382-015-2874-9 CrossRefGoogle Scholar
  12. Chung P-H, Sui C-H, Li T (2011) Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J Geophys Res-Atmos 116(D13):D13111.  https://doi.org/10.1029/2010jd015554 CrossRefGoogle Scholar
  13. Dong D, Huang G, Tao W, Wu R, Hu K, Li C (2018) Interannual variation of precipitation over the Hengduan Mountains during rainy season. Int J Climatol 38(4):2112–2125.  https://doi.org/10.1002/joc.5321 CrossRefGoogle Scholar
  14. Du Y, Xie SP, Huang G, Hu K (2009) Role of air-sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. J Clim 22(8):2023–2038CrossRefGoogle Scholar
  15. Fan L, Shin S-I, Liu Q, Liu Z (2013) Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys Res Lett 40(10):2471–2477.  https://doi.org/10.1002/grl.50494 CrossRefGoogle Scholar
  16. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462.  https://doi.org/10.1256/smsqj.44904 CrossRefGoogle Scholar
  17. Gong Z, Dogar MM, Qiao S, Hu P, Feng G (2018a) Assessment and correction of BCC_CSM’s performance in capturing leading modes of summer precipitation over North Asia. Int J Climatol 38(5):2201–2214.  https://doi.org/10.1002/joc.5327 CrossRefGoogle Scholar
  18. Gong Z, Feng G, Dogar MM, Huang G (2018b) The possible physical mechanism for the EAP–SR co-action. Clim Dyn 51(4):1499–1516.  https://doi.org/10.1007/s00382-017-3967-4 CrossRefGoogle Scholar
  19. He C, Zhou T, Li T (2019) Weakened anomalous western North Pacific anticyclone during an El Niño–decaying summer under a warmer climate: dominant role of the weakened impact of the tropical Indian Ocean on the atmosphere. J Clim 32(1):213–230.  https://doi.org/10.1175/jcli-d-18-0033.1 CrossRefGoogle Scholar
  20. Hu K, Huang G, Wu R (2012) A strengthened influence of ENSO on August high temperature extremes over the southern Yangtze River valley since the late 1980s. J Clim 26(7):2205–2221.  https://doi.org/10.1175/jcli-d-12-00277.1 CrossRefGoogle Scholar
  21. Hu K, Huang G, Zheng X-T, Xie S-P, Qu X, Du Y, Liu L (2014) Interdecadal variations in ENSO influences on Northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J Clim 27(15):5982–5998.  https://doi.org/10.1175/jcli-d-13-00268.1 CrossRefGoogle Scholar
  22. Hu K, Xie S-P, Huang G (2017) Orographically anchored El Niño effect on summer rainfall in Central China. J Clim 30(24):10037–10045.  https://doi.org/10.1175/jcli-d-17-0312.1 CrossRefGoogle Scholar
  23. Jiang W, Huang G, Hu K, Wu R, Gong H, Chen X, Tao W (2017) Diverse relationship between ENSO and the Northwest Pacific summer climate among CMIP5 models: dependence on the ENSO decay pace. J Clim 30(1):109–127.  https://doi.org/10.1175/jcli-d-16-0365.1 CrossRefGoogle Scholar
  24. Jiang W, Huang G, Huang P, Hu K (2018) Weakening of Northwest Pacific anticyclone anomalies during post–El Niño summers under global warming. J Clim 31(9):3539–3555.  https://doi.org/10.1175/jcli-d-17-0613.1 CrossRefGoogle Scholar
  25. Jiang W, Huang G, Huang P, Wu R, Hu K, Chen W (2019) Northwest Pacific anticyclonic anomalies during post–El Niño summers determined by the pace of El Niño decay. J Clim 32(12):3487–3503.  https://doi.org/10.1175/jcli-d-18-0793.1 CrossRefGoogle Scholar
  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471.  https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 CrossRefGoogle Scholar
  27. Karori MA, Li JP, Jin FF (2013) The asymmetric influence of the two types of El Nino and La Nina on summer rainfall over Southeast China. J Clim 26(13):4567–4582.  https://doi.org/10.1175/jcli-d-12-00324.1 CrossRefGoogle Scholar
  28. Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932.  https://doi.org/10.1175/1520-0442(1999)012<0917:rsstvd>2.0.co;2 CrossRefGoogle Scholar
  29. Lau NC, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057CrossRefGoogle Scholar
  30. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Japan 44(1):25–43CrossRefGoogle Scholar
  31. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110(7):699–706.  https://doi.org/10.1175/1520-0493(1982)110<0699:seiteo>2.0.co;2 CrossRefGoogle Scholar
  32. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res-Atmos 108(D14):4407.  https://doi.org/10.1029/2002jd002670 CrossRefGoogle Scholar
  33. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) Atmospheric general circulation model ECHAM5: part I. Max-Planck-Institut für. Meteorologie Rep 349:140Google Scholar
  34. Stuecker MF, Timmermann A, Jin F-F, McGregor S, Ren H-L (2013) A combination mode of the annual cycle and the El Nino/Southern Oscillation. Nat Geosci 6(7):540–544.  https://doi.org/10.1038/ngeo1826 CrossRefGoogle Scholar
  35. Stuecker MF, Jin F-F, Timmermann A, McGregor S (2015) Combination mode dynamics of the anomalous Northwest Pacific anticyclone. J Clim 28(3):1093–1111.  https://doi.org/10.1175/jcli-d-14-00225.1 CrossRefGoogle Scholar
  36. Tao W, Huang G, Hu K, Qu X, Wen G, Gong Y (2014) Different influences of two types of El Niños on the Indian Ocean SST variations. Theor Appl Climatol 117(3–4):475–484.  https://doi.org/10.1007/s00704-013-1022-x CrossRefGoogle Scholar
  37. Tao W, Huang G, Hu K, Gong H, Wen G, Liu L (2015a) A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models. Clim Dyn 46(1):205–226.  https://doi.org/10.1007/s00382-015-2579-0 Google Scholar
  38. Tao W, Huang G, Hu K, Qu X, Wen G, Gong H (2015b) Interdecadal modulation of ENSO teleconnections to the Indian Ocean Basin mode and their relationship under global warming in CMIP5 models. Int J Climatol 35(3):391–407.  https://doi.org/10.1002/joc.3987 CrossRefGoogle Scholar
  39. Tao W, Huang G, Wu R, Hu K, Wang P, Chen D (2017) Asymmetry in summertime atmospheric circulation anomalies over the northwest Pacific during decaying phase of El Niño and La Niña. Clim Dyn 49(5):2007–2023.  https://doi.org/10.1007/s00382-016-3432-9 CrossRefGoogle Scholar
  40. Tao W, Huang G, Wu R, Hu K, Wang P, Gong H (2018) Origins of biases in CMIP5 models simulating Northwest Pacific summertime atmospheric circulation anomalies during the decaying phase of ENSO. J Clim 31(14):5707–5729.  https://doi.org/10.1175/jcli-d-17-0289.1 CrossRefGoogle Scholar
  41. Wang B, Fan Z (1999) Choice of south Asian summer monsoon indices. Bull Am Meteorol Soc 80(4):629–638.  https://doi.org/10.1175/1520-0477(1999)080<0629:cosasm>2.0.co;2 CrossRefGoogle Scholar
  42. Wang B, Zhang Q (2002) Pacific-east Asian teleconnection. Part II: how the Philippine Sea anomalous anticyclone is established during El Nino development. J Clim 15(22):3252–3265.  https://doi.org/10.1175/1520-0442(2002)015<3252:peatpi>2.0.co;2 CrossRefGoogle Scholar
  43. Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13(9):1517–1536.  https://doi.org/10.1175/1520-0442(2000)013<1517:peathd>2.0.co;2 CrossRefGoogle Scholar
  44. Wang B, Wu ZW, Li JP, Liu J, Chang CP, Ding YH, Wu GX (2008) How to measure the strength of the east Asian summer monsoon. J Clim 21(17):4449–4463.  https://doi.org/10.1175/2008jcli2183.1 CrossRefGoogle Scholar
  45. Wang B, Xiang B, Lee J-Y (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci 110(8):2718–2722.  https://doi.org/10.1073/pnas.1214626110 CrossRefGoogle Scholar
  46. Watanabe M, Jin F (2002) Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys Res Lett 29(10):1478CrossRefGoogle Scholar
  47. Wu R, Yeh S-W (2010) A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J Geophys Res-Atmos 115(D8):D08101.  https://doi.org/10.1029/2009jd012999 CrossRefGoogle Scholar
  48. Wu RG, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16(22):3742–3758.  https://doi.org/10.1175/1520-0442(2003)016<3742:eoerai>2.0.co;2 CrossRefGoogle Scholar
  49. Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res-Atmos 113(D5):D05104.  https://doi.org/10.1029/2007jd009316 CrossRefGoogle Scholar
  50. Wu B, Zhou T, Li T (2009a) Seasonally evolving dominant interannual variability modes of east Asian climate*. J Clim 22(11):2992–3005.  https://doi.org/10.1175/2008jcli2710.1 CrossRefGoogle Scholar
  51. Wu R, Wen Z, Yang S, Li Y (2009b) An interdecadal change in southern China summer rainfall around 1992/93. J Clim 23(9):2389–2403.  https://doi.org/10.1175/2009jcli3336.1 CrossRefGoogle Scholar
  52. Wu B, Li T, Zhou T (2010) Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacific anomalous anticyclone during the El Niño decaying summer*. J Clim 23(11):2974–2986.  https://doi.org/10.1175/2010jcli3300.1 CrossRefGoogle Scholar
  53. Wu B, Zhou T, Li T (2017a) Atmospheric dynamic and thermodynamic processes driving the Western North Pacific anomalous anticyclone during El Niño. Part I: maintenance mechanisms. J Clim 30(23):9621–9635.  https://doi.org/10.1175/jcli-d-16-0489.1 CrossRefGoogle Scholar
  54. Wu B, Zhou T, Li T (2017b) Atmospheric dynamic and thermodynamic processes driving the Western North Pacific anomalous anticyclone during El Niño. Part II: formation processes. J Clim 30(23):9637–9650.  https://doi.org/10.1175/jcli-d-16-0495.1 CrossRefGoogle Scholar
  55. Xiang B, Wang B, Yu W, Xu S (2013) How can anomalous western North Pacific subtropical high intensify in late summer? Geophys Res Lett 40(10):2349–2354.  https://doi.org/10.1002/grl.50431 CrossRefGoogle Scholar
  56. Xie S-P, Zhou Z-Q (2017) Seasonal modulations of El Niño–related atmospheric variability: Indo–Western Pacific Ocean feedback. J Clim 30(9):3461–3472.  https://doi.org/10.1175/jcli-d-16-0713.1 CrossRefGoogle Scholar
  57. Xie SP, Annamalai H, Schott FA, McCreary JP Jr (2002) Structure and mechanisms of south Indian ocean climate variability. J Clim 15(8):864–878CrossRefGoogle Scholar
  58. Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22(3):730–747CrossRefGoogle Scholar
  59. Xie S-P, Kosaka Y, Du Y, Hu K, Chowdary JS, Huang G (2016) Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33(4):411–432.  https://doi.org/10.1007/s00376-015-5192-6 CrossRefGoogle Scholar
  60. Yang J, Liu Q, Xie S, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34(2):L02708.  https://doi.org/10.1029/2006gl028571 CrossRefGoogle Scholar
  61. Yang J, Liu Q, Liu Z (2010) Linking observations of the Asian monsoon to the Indian Ocean SST: possible roles of Indian Ocean basin mode and dipole mode. J Clim 23(21):5889–5902.  https://doi.org/10.1175/2010jcli2962.1 CrossRefGoogle Scholar
  62. Zhang RH, Sumi A, Kimoto M (1996) Impact of El Nino on the East Asian monsoon: a diagnostic study of the '86/87 and '91/92 events. J Meteorol Soc Jpn 74(1):49–62CrossRefGoogle Scholar
  63. Zhang W, Li H, Stuecker MF, Jin F-F, Turner AG (2016) A new understanding of El Niño’s impact over East Asia: dominance of the ENSO combination mode. J Clim 29(12):4347–4359.  https://doi.org/10.1175/jcli-d-15-0104.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Weichen Tao
    • 1
    • 2
  • Gang Huang
    • 1
    • 3
    • 4
    • 5
    Email author
  • Pengfei Wang
    • 1
    • 6
  • Yang Liu
    • 7
  • Guanhuan Wen
    • 8
  • Danhong Dong
    • 1
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA
  3. 3.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Joint Center for Global Change StudiesBeijingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina
  6. 6.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  7. 7.National Meteorological CentreChina Meteorological AdministrationBeijingChina
  8. 8.Guangzhou Institute of Tropical and Marine MeteorologyChina Meteorological AdministrationGuangzhouChina

Personalised recommendations