Advertisement

Rainfall-related natural disasters in the Northeast of Brazil as a response to ocean-atmosphere interaction

  • Bruce Kelly N. SilvaEmail author
  • Ana Cleide B. Amorim
  • Claudio M. S. Silva
  • Paulo S. Lucio
  • Lara M. Barbosa
Original Paper
  • 31 Downloads

Abstract

The objective of this work is to investigate the interaction between the climate indices precipitation concentration degree (PCD), precipitation concentration period (PCP), and oceanic patterns associated with drought disasters in the Northeast of Brazil (NEB). The average values of drought disasters were situated at the semi-arid zone, while the hotspots between 95 and 99% of significance were more centralized, particularly in the states of Ceará, Rio Grande do Norte, Paraíba, and Pernambuco, where significant areas were located. The PCD patterns showed that precipitation was concentrated in the north of this region and the wettest quarter happened from February to April, in accordance with PCP patterns. The analysis of variance (ANOVA) A showed evidence of the variability of PDC and PCP in relation to the well-known variability modes of the oceans. However, only two areas of NEB presented statistical significance.

Notes

Acknowledgments

We would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for granting a postdoctoral fellowship to the first two authors, and the agencies that provided the data.

References

  1. Alvarez CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen's climate classification map for Brazil. Meteorol Z 22(6):711–728.  https://doi.org/10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  2. Alves JMB, Ferreira FF, Campos JNB (2005) Movimento e índices atmosféricos associados às células Hadley e Walker em anos de contrastes climáticos: relação com as chuvas no setor norte do Nordeste do Brasil Revista Brasileira de Meteorologia 20(18):15–36.Google Scholar
  3. Alves JMB, Repelli CA (1992) Variabilidade pluviométrica no setor norte do Nordeste e os eventos El-Niño Oscilação Sul. Revista Brasileira de Meteorologia 79(2):583–592Google Scholar
  4. Amorim ACB (2016) Influência de sub-regiões do Atlântico tropical na precipitação no leste do Nordeste brasileiro. Universidade Federal do Rio Grande do Norte, DissertationGoogle Scholar
  5. Amorim ACB, Chaves RR, Silva CMS (2014) Influence of the Tropical Atlantic Ocean’s Sea Surface Temperature in the Eastern Northeast Brazil Precipitation. Atmos Clim Sci 4(5):874–883.  https://doi.org/10.4236/acs.2014.45077
  6. Andreoli RV, Kayano MT (2007) A importância relativa do atlântico tropical sul e pacífico leste na variabilidade de precipitação do Nordeste do Brasil. Rev Bras Meteorol 22:63–74.  https://doi.org/10.1590/S0102-77862007000100007 CrossRefGoogle Scholar
  7. Araújo JMS, Maia AG, Neves JA (2015) Uso os índices PCP e PCD na determinação de regiões com precipitação pluvial homogênea. Revista Brasileira de Climatologia 17:119–139CrossRefGoogle Scholar
  8. Box GEP, Pierce DA (1970) Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association 65(332):1509–1526.Google Scholar
  9. Carvalho LMV, Jones C (2009) Zona de Convergência do Atlântico Sul. In: Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 95–109Google Scholar
  10. Cavalcanti IFA, Kousky VE (2009) Frentes Frias Sobre o Brasil. In: Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 135–147Google Scholar
  11. Chaves RR, Cavalcanti IFA (2001) Atmospheric circulation features associated with rainfall variability over southern Northeast Brazil. Mon Weather Rev 129:2614–2626.  https://doi.org/10.1175/1520-0493(2001)129<2614:ACFAWR>2.0.CO;2 CrossRefGoogle Scholar
  12. Chen J, Chung CH (2015). Representation of global precipitation anomalies using four major climate patterns. Sci China Technol Sc 58(5):927–934Google Scholar
  13. Coelho CAS, Uvo CB, Ambrizzi T (2002) Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theor Appl Climatol 71:185–197.  https://doi.org/10.1007/s007040200004 CrossRefGoogle Scholar
  14. Coelho MDS, Gan MA, Conforte JC (2004) Estudo da variabilidade da posição e da nebulosidade associada a ZCIT do Atlântico, durante a estação chuvosa de 1998 e 1999 no Nordeste do Brasil. Rev Bras Meteorol 19:23–34Google Scholar
  15. Da Silva AG, E Silva CMS (2014) Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil. Adv Meteorol 2014:1–9.  https://doi.org/10.1155/2014/928729 Google Scholar
  16. De Oliveira PT, Santos CM, Lima KC (2014) Linear trend of occurrence and intensity of heavy rainfall events on Northeast Brazil. Atmos Sci Lett 177:172–177.  https://doi.org/10.1002/asl2.484 CrossRefGoogle Scholar
  17. De Souza EB, Kayano MT, Ambrizzi T (2005) Intraseasonal and submonthly variability over the eastern Amazon and Northeast Brazil during the autumn rainy season. Theor Appl Climatol 81:177–191.  https://doi.org/10.1007/s00704-004-0081-4 CrossRefGoogle Scholar
  18. Dinpashoh Y, Fakheri-Fard A, Moghaddam M, Jahanbakhsh S, Mirnia M (2004) Selection of variables for the purpose of regionalization of Iran’s precipitation climate using multivariate methods. J Hydrol 297:109–123.  https://doi.org/10.1016/j.jhydrol.2004.04.009 CrossRefGoogle Scholar
  19. Farias ABF (2010) A teoria da entropia aplicada no estudo da precipitação pluvial e da vazão fluvial no nordeste do Brasil. Dissertation, Universidade Federal de Campina GrandeGoogle Scholar
  20. Folland CK, Colman AW, Rowell DP, Davey MK (2001) Predictability of Northeast Brazil rainfall and real-time forecast skill, 1987-98. J Clim 14:1937–1958.  https://doi.org/10.1175/1520-0442(2002)015<1993:NOPONB>2.0.CO;2 CrossRefGoogle Scholar
  21. Fraser EDG, Simelton E, Termansen M, Gosling SN, South A (2013) ‘Vulnerability hotspots’: integrating socio-economic and hydrological models to identify where cereal production may decline in the future dua to climate change induced drought. Agric For Meteorol 170:195–205CrossRefGoogle Scholar
  22. Gomes HB, Ambrizzi T, Herdies DL, Hodges K, Silva BFP (2015) Easterly wave disturbances over Northeast Brazil: an observational analysis. Adv Meteorol 2014:ID176238.  https://doi.org/10.1155/2015/176238 Google Scholar
  23. Hastenrath S, Heller L (1977) Dynamics of climatic hazards in Northeast Brazil. Q J R Meteorol Soc 103:77–92CrossRefGoogle Scholar
  24. Huang DQ, Qian YF, Zhu J (2012) The heterogeneity of Meiyu rainfall over Yangtze-Huaihe River valley and its relationship with oceanic surface heating and intraseasonal variability. Theor Appl Climatol 108:601–611.  https://doi.org/10.1007/s00704-011-0551-4 CrossRefGoogle Scholar
  25. Kousky VE (1979) Frontal influences on Northeast Brazil. Mon Weather Rev 107(9):1140–1153CrossRefGoogle Scholar
  26. Kousky VE, Gan MA (1981) Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus 33:538–551.  https://doi.org/10.1111/j.2153-3490.1981.tb01780.x CrossRefGoogle Scholar
  27. Leroux S, Hall NMJ, Kiladis GN (2011) Intermittent African Easterly Wave Activity in a Dry Atmospheric Model: Influence of the Extratropics. Journal of Climate 24(20):5378–5396  https://doi.org/10.1175/jcli-d-11-00049.1
  28. Li X, Jiang F, Li L, Wang G (2010) Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int J Climatol 1693: n/a-n/a.  https://doi.org/10.1002/joc.2181
  29. Lucena DB, Servain J, Filho MFG (2011) Rainfall response in Northeast Brazil from ocean climate variability during the second half of the twentieth century. J Clim 24:6174–6184.  https://doi.org/10.1175/2011JCLI4194.1 CrossRefGoogle Scholar
  30. Markham CG, McLain DR (1977) Sea surface temperature related to rain in Ceará, north-eastern Brazil. Nature 265(5592):320–323Google Scholar
  31. Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov’s distribution. J Stat Softw 8:1–4.  https://doi.org/10.18637/jss.v008.i18 Google Scholar
  32. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to the time scales. In Conferece on Applied Climatology, Boston: American Meteorological Society 8:179-184Google Scholar
  33. Melo ABC, Cavalcanti IFA, Souza PP (2009) Zona de Convergência Intertropical do Atlântico. In: In: Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 28–41Google Scholar
  34. Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil: observations, theory, and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2675CrossRefGoogle Scholar
  35. Oliveira PT, Lima KC, Santos e Silva CM (2013) Synoptic environment associated with heavy rainfall events on the coastland of Northeast Brazil. Adv Geosci 35:73–78.  https://doi.org/10.5194/adgeo-35-73-2013 CrossRefGoogle Scholar
  36. Palmer WC (1965) Meteorological drought. US Department of Commerce, Weather Bureau Washington, DCGoogle Scholar
  37. Racine J, Hyndman R (2002) Using R to teach econometrics. J Appl Econ 189:1–14.  https://doi.org/10.1002/jae.657 Google Scholar
  38. Rao VB, Sá LDA, Franchito SH, Hada K (1997) Interannual variations of rainfall and corn yields in Northeast Brazil. Agric For Meteorol 85:63–74.  https://doi.org/10.1016/S0168-1923(96)02390-8 CrossRefGoogle Scholar
  39. Rodrigues RR, Haarsma RJ, Campos EJD, Ambrizzi T (2012) The impacts of inter–El Niño variability on the tropical Atlantic and Northeast Brazil climate. J Clim 24:3402–3422.  https://doi.org/10.1175/2011JCLI3983.1 CrossRefGoogle Scholar
  40. Silva VDPR (2004) On climate variability in northeast of Brazil. J Arid Environ 58:575–596.  https://doi.org/10.1016/j.jaridenv.2003.12.002 CrossRefGoogle Scholar
  41. Silva BKN, Lucio PS (2014a) Characterization of risk/exposure to climate extremes for the Brazilian northeast-case study: Rio Grande do Norte. Theor Appl Climatol 122:59–67.  https://doi.org/10.1007/s00704-014-1275-z CrossRefGoogle Scholar
  42. Silva BKN, Lucio PS (2014b) Indicator of agriculture vulnerability to climatic extremes. A conceptual model with case study for the Northeast Brazil. Atmos Clim Sci 4:334–345Google Scholar
  43. Simões YS, Silva EHBC, Araújo HA (2018) Rainfall zoning of Bahia State, Brazil: an update proposal. Ambiente & Água 13:1–18.  https://doi.org/10.4136/ambi-agua.2171
  44. Soares Dos Santos T, Mendes D, Rodrigues Torres R (2016) Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America. Nonlinear Process Geophys 23:13–20.  https://doi.org/10.5194/npg-23-13-2016 CrossRefGoogle Scholar
  45. Souza EB, Ambrizzi T (2002) ambrizzi2002.pdf. Atmósfera 105–120Google Scholar
  46. Souza EB, Kayano MΤ, Tota J, Pezzi L (2000) On the influences of the El nino, La Nina and Atlantic dipole pattern on the Amazonian rainfall during 1960-1998. Acta Amaz 30:305–318CrossRefGoogle Scholar
  47. Torres RR, Lapola MD, Marengo JA, Lombardo MA (2012) Socio-climatic hotspots in Brazil. Clim Chang 115:597–609.  https://doi.org/10.1007/s10584-012-0461-1 CrossRefGoogle Scholar
  48. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777.  https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2 CrossRefGoogle Scholar
  49. Wang W, Xing W, Yang T, Shao Q, Peng S, Yu Z, Yong B (2013) Characterizing the changing behaviours of precipitation concentration in the Yangtze River basin. China Hydrol Process 27:3375–3393.  https://doi.org/10.1002/hyp.9430 CrossRefGoogle Scholar
  50. Zhang L-J, Qian Y-F (2004) A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River valley of China. Chin J Geophys 47:709–718.  https://doi.org/10.1002/cjg2.3541 CrossRefGoogle Scholar
  51. Zhang L, Yongfu Q (2003) Annual distribution features of precipitation in China and their interannual variations. Acta Meteorol Sin 17:146–163Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-graduação em Ciências ClimáticasUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations