Theoretical and Applied Climatology

, Volume 138, Issue 3–4, pp 1615–1628 | Cite as

The highest monthly precipitation in the area of the Ukrainian and the Polish Carpathian Mountains in the period from 1984 to 2013

  • Dariia KholiavchukEmail author
  • Marta Cebulska
Original Paper


The article deals with annual and multiannual courses of the highest monthly precipitation in the Polish and the Ukrainian Carpathians on the basis of the data from 27 measuring stations in the period from 1984 to 2013. The monthly precipitation variability in terms of the highest values in the annual, decadal and the 30-year dimension, taking into consideration the spatial coverage, is the key to the understanding of the precipitation climates of the Carpathian mountain regions with distinctive local features of climate change. The highest monthly amounts of precipitation are regularly observed in the period from May to September and only occasionally in the rest of the months. In winter months, the frequency of occurrence of the highest monthly precipitation totals does not exceed 1%. The highest monthly total precipitation in the whole period out of all the stations was recorded in the most western part of the Polish Carpathians and in the central part of the Ukrainian Carpathians. July 2008 was the only month when the highest monthly precipitation in a year was observed at all stations. The range of the highest monthly precipitation values is broader in the Ukrainian part. Cyclonic circulation patterns are the predominant cause of the highest monthly precipitation in both the Polish and the Ukrainian Carpathians. The findings suggest no significant trends, no apparent patterns in the temporal and spatial distribution of the highest monthly precipitation cases with the biggest number of the highest monthly precipitations cases in the last decade and the prevalence of the cases in the warm period.



  1. Antofie T, Naumann G, Spinoni J, Vogt J (2015) Estimating the water needed to end the drought or reduce the drought severity in the Carpathian region. Hydrol Earth Syst Sci 19:177–193. CrossRefGoogle Scholar
  2. Banacos PC (2011) Box and whisker plots for local climate datasets: interpretation and creation using Excel 2007/2010. Eastern region technical attachment, 2011–01Google Scholar
  3. Bissolli P, Friedrich K, Rapp J, Ziese M (2011) Flooding in eastern Central Europe in May 2010 – reasons, evolution and climatological assessment. Weather 66:147–153. CrossRefGoogle Scholar
  4. Bokwa A, Wypych A, Ustrnul Z (2013) Climate changes in the vertical zones of the Polish Carpathians in the last 50 years. In: Kozak J, Ostapowicz K, Bytnerowicz A, Wyżga B (eds) The Carpathians: integrating nature and society towards sustainability. Environmental Science and Engineering. Springer, Heidelberg, pp 89–109Google Scholar
  5. Cahynová M, Huth R (2016) Atmospheric circulation influence on climatic trends in Europe: an analysis of circulation type classifications from the COST733 catalogue. Int J Climatol 36:2743–2760. CrossRefGoogle Scholar
  6. Cebulak E, Kilar P, Limanówka D, Mizera M, Pyrc R (2011) The intensity and spatial distribution of atmospheric precipitation. In: Maciejewski M, Ostojski M, Walczykiewicz T (eds) Dorzecze Wisły – monografia powodzi maj-czerwiec 2010. Instytut Meteorologii i Gospodarki Wodnej– Państwowy Instytut Badawczy, Warszawa, pp 11–19 (in Polish)Google Scholar
  7. Cebulska M, Twardosz R (2012) Temporal variability of maximum monthly precipitation totals in the Polish Western Carpathian Mts during the period 1951–2005. Prace Geograficzne 128:123–134. (in Polish)CrossRefGoogle Scholar
  8. Cebulska M, Twardosz R, Cichocki J (2007) Changes of annual precipitation totals in the Upper Vistula River Basin, 1881–2030. In: Piotrowicz K, Twardosz R (eds) Wahania klimatu w różnych skalach przestrzennych i czasowych. Instytut Geografii i Gospodarki Przestrzennej UJ, Kraków, pp 383–390 (in Polish)Google Scholar
  9. Cheval S, Birsan M, Dumitrescu A (2014) Climate variability in the Carpathian Mountains region over 1961-2010. Glob Planet Chang 118:85–96CrossRefGoogle Scholar
  10. Fleig AK, Tallaksen LM, James P, Hisdal H, Stahl K (2015) Attribution of European precipitation and temperature trends to changes in synoptic circulation. Hydrol Earth Syst Sci 19:3093–3107. CrossRefGoogle Scholar
  11. Ge F, Zhi X, Babar ZA, Tang W, Chen P (2017) Interannual variability of summer monsoon precipitation over the Indochina Peninsula in association with ENSO. Theor Appl Climatol 128:523–531. CrossRefGoogle Scholar
  12. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. CrossRefGoogle Scholar
  13. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London, p 202Google Scholar
  14. Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63(1):24–40.
  15. Kossowska-Cezak U, Bajkiewicz-Grabowska E (2009) Fundamentals of hydrometeorology. PWN, Warszawa 249 p (in Polish)Google Scholar
  16. Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation and vulnerability. Part B: regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 1267–1326Google Scholar
  17. Kożuchowski K (1985) Variation in precipitation in the years 1881-1980 in Poland. Acta Geographica Lodziensia nr 48, 151 p (in Polish)Google Scholar
  18. Kożuchowski K (1990) Materials to learn about the history of climate in the instrumental observation time. Wydawnictwo Uniwersytetu Łódzkiego, Łódź 301 p (in Polish)Google Scholar
  19. Kynal O (2008) Mesoclimatic features of the Ukrainian Carpathians landscapes. Uchenye zapiski Krymskogo federal'nogo universiteta imeni V. I Vernadskogo. Geografiya. Geologiya 21(60):176–187 (in Ukrainian)Google Scholar
  20. Kynal O, Kholiavchuk D (2016) Climate variability in the mountain river valleys of the Ukrainian Carpathians. Quat Int 415:154–163. CrossRefGoogle Scholar
  21. Łupikasza E (2010) Relationships between occurrence of high precipitation and atmospheric circulation in Poland using different classifications of circulation types. Phys Chem Earth Parts A/B/C 35(9–12):448–455. CrossRefGoogle Scholar
  22. Łupikasza E (2016) The climatology of air-mass and frontal extreme precipitation: study of meteorological data in Europe. Springer, Cham 313 pCrossRefGoogle Scholar
  23. Marin L, Birsan MV, Bojariu R, Dumitrescu A, Micu DM, Manea A (2014) An overview of annual climatic changes in Romania: trends in air temperature, precipitation, sunshine hours, cloud cover, relative humidity, and wind speed during the 1961–2013 period. Carpathian J Earth Environ Sci 9(4):253–258Google Scholar
  24. Massart DL, Smeyers-Verbeke J, Capron X, Schlesier K (2005) Visual presentation of data by means of box plots. LC-GC Europe 18(4):215–218Google Scholar
  25. Masson D, Frei C (2014) Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types. Hydrol Earth Syst Sci 18(11):4543–4563. CrossRefGoogle Scholar
  26. Micu DM, Dumitrescu A, Cheval S, Birsan MV (2015) Geographical and synoptic controls on the climate. In: Climate of the Romanian Carpathians. Springer Atmospheric Sciences. Springer, Cham, pp 57–72Google Scholar
  27. Moser B, Stevens G (1992) Homogeneity of variance in the two-sample means test. Am Stat 46(1):19–21. CrossRefGoogle Scholar
  28. Mudelsee M (2010) Climate time series analysis: classical statistical and bootstrap methods. Springer, Dordrecht 471 pCrossRefGoogle Scholar
  29. Niedźwiedź T (1981) Synoptic situations and their impact on the spatial diversity of selected climate elements in the Upper Vistula basin. Rozprawy habilitacyjne UJ 58:1–165 in PolishGoogle Scholar
  30. Niedźwiedź T (2012) Climate. In: Lóczy D, Stankoviansky M, Kotarba A (eds) Recent Landform Evolution. Springer Geography. Springer, Dordrecht, pp 19–29.
  31. Niedźwiedź T (2013) Calendar of circulation types for territory of southern Poland. Uniwersytet Śląski, Katedra Klimatologii, Sosnowiec.!/podstrony/kalendarztn. Accessed 26 November 2018 (in Polish)Google Scholar
  32. Niedźwiedź T, Obrębska-Starklowa B (1991) Klimat. In: Dynowska I, Maciejowski M (eds) Dorzecze górnej Wisły, cz. I, Wydawnictwo PWN, Warszawa, Kraków, pp 68–84 (in Polish)Google Scholar
  33. Niedźwiedź T, Twardosz R, Walanus A (2009) Long-term variability of precipitation series in east Central Europe in relation to circulation patterns. Theor Appl Climatol 98:337–350. CrossRefGoogle Scholar
  34. Obrębska-Starklowa B, Hess M, Olecki Z, Trepińska J, Kowanetz L (1995) Climate. In: Warszyńska J (ed) Karpaty Polskie, Przyroda, człowiek i jego działalność. Uniwersytet Jagielloński, Kraków, pp 31–47 (in Polish)Google Scholar
  35. Pendergrass AG, Knutti R, Lehner F, Deser C, Sanderson BM (2017) Precipitation variability increases in a warmer climate. Sci Rep 7(1):17966. CrossRefGoogle Scholar
  36. Piticar A, Ristoiu D (2013) Spatial distribution and temporal variability of precipitation in northeastern Romania. Risks and Catastrophes Journal 13(2):35–46Google Scholar
  37. Pohlert T (2018) Non-parametric trend tests and change-point detection. Accessed 16 November 2018
  38. Shi X, Durran DR (2015) Estimating the response of extreme precipitation over midlatitude mountains to global warming. J Clim 28(10):4246–4262. CrossRefGoogle Scholar
  39. Spinoni J, Szalai S, Szentimrey T, Lakatos M, Bihari Z, Nagy A, Németh Á, Kovács T, Mihic D, Dacic M, Petrovic P, Kržič A, Hiebl J, Auer I, Milkovic J, Štepánek P, Zahradnícek P, Kilar P, Limanowka D, Pyrc R, Cheval S, Birsan MV, Dumitrescu A, Deak G, Matei M, Antolovic I, Nejedlík P, Štastný P, Kajaba P, Bochnícek O, Galo D, Mikulová K, Nabyvanets Y, Skrynyk O, Krakovska S, Gnatiuk N, Tolasz R, Antofie T, Vogt J (2014) Climate of the Carpathian region in the period 1961–2010: climatologies and trends of 10 variables. Int J Climatol 35:1322–1341. CrossRefGoogle Scholar
  40. Starkel L (1991) Rzeźba terenu. In: Dynowska I, Maciejowski M (eds) Dorzecze górnej Wisły, cz. I, Wydawnictwo PWN, Warszawa, Kraków, pp 42–54 (in Polish)Google Scholar
  41. Twardosz R, Cebulska M (2014) Anomalously high monthly precipitation totals in the Polish Carpathian Mountains and their foreland (1881–2010). Prace Geograficzne 138:7–28. (in Polish)CrossRefGoogle Scholar
  42. Twardosz R, Niedźwiedź T, Łupikasza E (2011) The influence of atmospheric circulation on the type of precipitation (Kraków, southern Poland). Theor Appl Climatol 104(1):233–250. CrossRefGoogle Scholar
  43. Twardosz R, Cebulska M, Walanus A (2016) Anomalously heavy monthly and seasonal precipitation in the Polish Carpathian Mountains and their foreland during the years 1881-2010. Theor Appl Climatol 126:323–337. CrossRefGoogle Scholar
  44. Ustrnul Z, Kowanetz L, Matuszko D, Twardosz R, Piotrowicz K, Wypych A (2009) Climatic conditions for the development of agriculture in the basin of the Upper Vistula at the turn of the 20th and 21st centuries. In: Górka Z, Zborowski A (eds) Człowiek i rolnictwo. Instytut Geografii i Gospodarki Przestrzennej Uniwersytet Jagielloński, Kraków, pp 135–147 (in Polish)Google Scholar
  45. Vaheddoost B, Aksoy H (2016) Structural characteristics of annual precipitation in Lake Urmia basin. Theor Appl Climatol 128(3–4):919–932. CrossRefGoogle Scholar
  46. van den Besselaar EJM, Klein Tank AMG, Buishand TA (2012) Trends in European precipitation extremes over 1951-2010. Int J Climatol.
  47. von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, Cambridge 495 pGoogle Scholar
  48. Woźniak A (2013) Precipitation in 2010 in the Polish Carpathians on the background of 1881–2010. Prace Geograficzne 133:35–48 (in Polish)Google Scholar
  49. Zemanek B (2009) Fitogeografczne problemy Karpat. Roczniki Bieszczadzkie 17: 43–58 (in Polish)Google Scholar
  50. Zhao C, Ding Y, Ye B, Yao S, Zhao Q, Wang Z, Wang Y (2011) An analyses of long-term precipitation variability based on entropy over Xinjiang, northwestern China. Hydrol Earth Syst Sci Discuss 8(2):2975–2999. CrossRefGoogle Scholar
  51. Żmudzka E (2010) Contemporary changes of the volume and the nature of precipitation in the Tatra Mountains. In: Nauka a zarządzanie obszarem Tatr i ich otoczeniem. Tom I, Zakopane, pp 157–164 (in Polish)Google Scholar
  52. Maksymiuk A, Furmaczyński K, Ignar S, Krupa J, Okruszko T (2008) Analysis of climatic and hydrologic parameters variability in the Biebrza River basin. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 3(41): 59–68 (in Polish)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Geography, Geomorphology, and PaleogeographyYuriy Fedkovych Chernivtsi National UniversityChernivtsiUkraine
  2. 2.Faculty of Environmental Engineering, Institute of Water Engineering and Water ManagementCracow University of TechnologyCracowPoland

Personalised recommendations