Theoretical and Applied Climatology

, Volume 138, Issue 3–4, pp 1375–1394 | Cite as

The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions

  • A. H. MaghrabiEmail author
  • M. M. Almutayri
  • A. F. Aldosary
  • B. I. Allehyani
  • A. A. Aldakhil
  • G. A. Aljarba
  • M. I. Altilasi
Original Paper


In this study, downward (LW) and outgoing longwave radiation measurements, air temperature (T), aerosol optical depth (AOD) at seven wavelengths, Ångstrom exponent (α), and precipitable water vapor (PWV) data from Riyadh, an arid site in central Saudi Arabia, for the period between 2014 and 2016 were used to study their variations and to investigate the influence of the meteorological variables on the measured downward LW radiation under clear sky conditions. Downward LW radiation and the air temperature have the same distributions. While the outgoing LW radiation and the Ångstrom exponent presented more than one peak in their distributions, the PWV was normally distributed with a mean value of about 11.9 ± 3.9 mm. Distribution of the AOD for all wavelengths has a log-normal shape. Theoretical simulations using SBDART code were conducted and showed that the downward LW radiative forcing increases by about 8% for every 1 mm increases in the water vapor, while it increases by about 4% in every 1 increase in the AOD at 500 nm value. Two variable models containing the PWV and T were developed to model the downward LW radiation. This model has a correlation coefficient of 0.91, MBE = − 0.004 W m−2, RMSE = 20.4 W m−2, and MPE = − 0.30%. Likewise, correlation analyses between the downward LW radiation and three independent variables (T, PWV, and AOD at 500 nm) were carried out. This model slightly improves the prediction of the LW radiation and has correlation coefficient of 0.93, MBE = 0.1 W m−2, RMSE = 17.3 W m−2, and MPE = − 0.20%.



We would, also, like to thank the anonymous reviewers for their valuable comments and recommendations.

Funding information

King Abdulaziz City for Science and Technology (KACST) supported this work.


  1. Alharbi B, Moied K (2005) Riyadh air quality report (1999-2004), King Abdulaziz City for Science and Technology, no. 279-25-ERGoogle Scholar
  2. Alharbi B, Maghrabi A, Tapper N (2013) The March 2009 dust event in Saudi Arabia: precursor and supportive environment. Bull Am Meteorol 94(4):516–527. CrossRefGoogle Scholar
  3. Al-Abbadi NM, Alawaji SH, Bin Mahfoodh MY, Myers DR, Wilcox S, Anderberg M (2002) Saudi Arabian solar radiation network operation data collection and quality assessment. Renewable Energy 25(2002):219–234Google Scholar
  4. Arking A (1991) The radiative effects of clouds and their impact on climate. Bull Am Meteorol Soc 71(6):795–813.<0795:TREOCA>2.0.CO;2 CrossRefGoogle Scholar
  5. Berdahl P, Fromberg P (1982) The thermal radiance of clear skies. Sol Energy 29:299–314. CrossRefGoogle Scholar
  6. Bilbao J, De Miguel A (2007) Estimation of daylight downward longwave atmospheric irradiance under clear-sky and all-sky conditions. J Appl Meteorol Climatol 46:878–889. CrossRefGoogle Scholar
  7. Bilbao J, Román R, Yousif C, Mateos D, De Miguel A (2014) Total ozone column, water vapour and aerosols effects on erythemal and global solar irradiance in Marsaxlokk, Malta. Atmos Environ 99:508–518. CrossRefGoogle Scholar
  8. Che H, Wang Y, Sun J, Zhang X, Xia Z (2013) Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol Air Qual Res 13:777–785. CrossRefGoogle Scholar
  9. Chen T, Rossow W, Zhang Y (2000) Radiative effects of cloud-type variations. J Clim 13:264–286.<0264:REOCTV>2.0.CO;2 CrossRefGoogle Scholar
  10. Chou M-D, Ridgway W (1990) Infrared radiation parameterizations in numerical climate models. J Clim 4:424–437.<0424:IRPINC>2.0.CO;2 CrossRefGoogle Scholar
  11. Chyleck P, Wong J (1998) Cloud radiative forcing ratio – an analytical model. Tellus A 50:259–264. CrossRefGoogle Scholar
  12. de Meij A, Lelieveld J (2011) Evaluating aerosol optical properties observed by ground-based and satellite remote sensing over the Mediterranean and the Middle East in 2006. Atmos Res 99:415–433. CrossRefGoogle Scholar
  13. Dilley A, O’Brien D (1998) Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q J R Meteorol Soc 124:1391–1401. CrossRefGoogle Scholar
  14. Dufresne J‐L, Gautier C, Fouquart Y (2002) Long‐wave scattering of mineral aerosols. Journal of Atmospheric Sciences 59:1959–1966Google Scholar
  15. Gai C, Li X, Zhao F (2006) Mineral aerosol properties observed in the northwest region of China. Glob Planet Chang 52:173–181. CrossRefGoogle Scholar
  16. Garcıa M (2004) Simplified modeling of the nocturnal clear sky atmospheric radiation for environmental applications. Ecol Model 180:395–406. CrossRefGoogle Scholar
  17. Goody RM (1964) Atmospheric Radiation. I: Theoretical Basis. Clarendon Press Oxford, OxfordGoogle Scholar
  18. Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols a review. Rev Geophys 38:513–543. CrossRefGoogle Scholar
  19. Holben B, Tanre D, Smirnov A, Eck T, Slutsker I et al (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res 106:12067–12097. CrossRefGoogle Scholar
  20. Horvath H, Catalan L, Trier A (1997) A study of the aerosol of Santiago de Chile III: Light absorption measurements, Atmos. Environ 31:3737–3744Google Scholar
  21. Jayaraman A, Lubin D, Ramachndran S, Ramanathan V, Woodbridge E, Collins W, Zalupuri K (1998) Direct observation of aerosol radiative forcing over the tropical Indian Ocean during the Jan.- Feb. 1996 pre-INDOEX cruise. J Geophys Res 103:13827–13836. CrossRefGoogle Scholar
  22. Jinhuan Q, Liquan Y (2000) Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994. Atmos Environ 34(4):603–609. CrossRefGoogle Scholar
  23. Kahn R, Gaitley B, Garay M, Diner D, Eck T, Smirnov A, Holben B (2010) MISR aerosol product assessment by comparison with AERONET. J Geophys Res 115(D23209).
  24. Kambezidis H, Kaskaoutis D (2008) Aerosol climatology over four AERONET sites: an overview. Atmos Environ 42:1892–1906. CrossRefGoogle Scholar
  25. Kip, kippzonen (2015) Accessed 12 Dec 2016
  26. Klingmüller K, Pozzer A, Metzger S, Stenchikov GL, Lelieveld J (2016) Aerosol optical depth trend over the Middle East. Atmos Chem Phys 16:5063–5073. CrossRefGoogle Scholar
  27. Kodratyev KY (1965) Radiative heat exchange in the atmosphere, 1st English edition. Pergamon, NYGoogle Scholar
  28. Kruk S, Vendrame F, Rocha R, Chou C, Cabral O (2010) Downward longwave radiation estimates for clear and all-sky conditions in the Sertãozinho region of São Paulo, Brazil. Theor Appl Climatol 99:115–123. CrossRefGoogle Scholar
  29. Kutiel H, Furman H (2003) Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor Built Environ 12(6):419–426. CrossRefGoogle Scholar
  30. Liu C, Ou S (1990) Effects of tropospheric aerosols on the solar radiative heating in a clear atmosphere. J Theor Appl Climatol 41:97–106. CrossRefGoogle Scholar
  31. Maghrabi A (2012) Modification of the IR sky temperature under different atmospheric conditions in an arid region in central Saudi Arabia: experimental and theoretical justification. J Geophys Res 117(D19207):1–15. CrossRefGoogle Scholar
  32. Maghrabi A, Al-Dosari A (2016) Effects on surface meteorological parameters and radiation levels of a heavy dust storm occurred in central Arabian peninsula. Atmos Res 182:30–35. CrossRefGoogle Scholar
  33. Maghrabi A, Alotaib R (2017) Long-term variations of AOD from an AERONET station in the central Arabian Peninsula. Theor Appl Climatol.
  34. Maghrabi A, Alharbi B, Tapper N (2011) Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos Environ 13(45):2164–2173. CrossRefGoogle Scholar
  35. Maykut G, Church P (1973) Radiation climate of Barrow, Alaska, 1962–66. J Appl Met 12:620–630.<0620:RCOBA>2.0.CO;2 CrossRefGoogle Scholar
  36. Monteith J (1961) An empirical method for estimating longwave exchange in the British Isles. Q J R Met Soc 87:171. CrossRefGoogle Scholar
  37. Navas-Guzman F, Guerrero-Rascado JL, Fernandez-Medina AB, Adame JA, Alados-Arboledas L (2007) Mixing layer height determination by Lidar and radiosounding data. European Aerosol Conference 2007, SalzburgGoogle Scholar
  38. Paltridge G, Platt C (1976) Radiative processes in meteorology and climatology, vol 103. Elsevier Scientific Publishing Company, Amsterdam, pp 527–528. CrossRefGoogle Scholar
  39. Román R, Antón M, Valenzuela A, Gil J et al (2013) Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance. Tellus B 65, 19578.Google Scholar
  40. Satheesh S, Ramanathan V (2000) Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature 405:60–63. CrossRefGoogle Scholar
  41. Sellers W (1965) Physical climatology, 1st edn. The University of Chicago Press, Chicago. CrossRefGoogle Scholar
  42. Smirnov A, Holben B, Dubovik O, Neil N, Eck T (2002) Atmospheric aerosol optical properties in the Persian Gulf. Atmos Sci 59:620–634.<0620:AAOPIT>2.0.CO;2 CrossRefGoogle Scholar
  43. Stone RJ (1993) Improved statistical procedure for the evaluation of solar radiation estimation models. Solar Energy 51(4):288–91Google Scholar
  44. Streets DG, Yan F, Chin M, Diehl T, Mahowald N, Schultz MW, Wu M, Ye Y, Carolyne S (2009) Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980e2006. J Geophys Res 114:D00D18. CrossRefGoogle Scholar
  45. Svendsen H, Jensen H, Jensen S, Mogensen V (1990) The effect of clear sky radiation on crop surface temperature determined by thermal thermometry. Agric For Meteorol 50:239–243. CrossRefGoogle Scholar
  46. Wild M, Ohmura A, Gilgen H, Morcrette J, Slingo A (2001) Evaluation of downward radiation in general circulation models. J Clim 14:3227–3229.<3227:EODLRI>2.0.CO;2 CrossRefGoogle Scholar
  47. Xia X, Li Z, Wang P, Chen H, Cribb M (2007) Estimation of aerosol effects on surface irradiance based on measurements and radiative transfer model simulations in northern China. J Geophys Res 112:D22S10. CrossRefGoogle Scholar
  48. Xia X, Chen H, Wang P, Zong X, Gouloub P, Qiu J (2005) Aerosol properties and their spatial and temporal variations over north China in spring 2001. Tellus Ser B 57:28–39Google Scholar
  49. Xia XA, Chen HB, Wang PC, Zhang WX, Goloub P, Chatenet B, Eck TF, Holben BN (2006) Variation of column-integrated aerosol properties in a Chinese urban region. J Geophys Res 111:D05204Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • A. H. Maghrabi
    • 1
    Email author
  • M. M. Almutayri
    • 1
  • A. F. Aldosary
    • 1
  • B. I. Allehyani
    • 2
  • A. A. Aldakhil
    • 2
  • G. A. Aljarba
    • 2
  • M. I. Altilasi
    • 1
  1. 1.National Centre for Applied PhysicsKing Abdulaziz City For Science and TechnologyRiyadhSaudi Arabia
  2. 2.Prince Nora University Riyadh Saudi ArabiaRiyadhSaudi Arabia

Personalised recommendations