Theoretical and Applied Climatology

, Volume 138, Issue 3–4, pp 1457–1470 | Cite as

Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau

  • Guojie HuEmail author
  • Lin Zhao
  • Xiaodong Wu
  • Ren Li
  • Tonghua Wu
  • Youqi Su
  • Junming Hao
Original Paper


Surface air temperature is important for climate change, hydrological, and ecosystems undergoing climate warming in the permafrost regions on the Qinghai-Tibetan Plateau (QTP). We monitored daily air temperatures at five sites (alpine desert, alpine desert steppe, alpine steppe, alpine meadow, and alpine wet meadow) from 2011 to 2015 in permafrost regions on the QTP. Using this data, we evaluated the performance of five different reanalysis air temperature products (CFSR, ERA-Interim, GLDAS-NOAH, MERRA, JRA-55, and CMFD). These results demonstrated that the ERA-Interim air temperature products exhibited the best performance at the majority of sites. However, the original ERA-Interim air temperature products were found to overestimate air temperature at most sites. The calibration models were established by the observed daily air temperatures measured from 2013 to 2015 for the ERA-Interim air temperature products, which validated with observational data from 2011 to 2012. Following calibration, ERA-Interim products were found to be closer to the observations made across all sites. In addition, this paper demonstrated a warming trend present in month, seasonal, and annual mean air temperature from the calibration results collected from 1980 to 2015. These results demonstrated that the largest warming trend was observed in February, while the smallest warming trend was observed in March. We demonstrated that all air temperatures warmed fastest in the summer and winter, more slowly in autumn, and the slowest in spring at the majority of sites tested. In addition, we found that the average annual air temperature warming trends were 0.0398, 0.0394, 0.0288, 0.0259, and 0.0254 °C/year in the alpine desert steppe, alpine desert, alpine steppe, alpine meadow, and alpine wet meadow in the permafrost regions on the QTP, respectively. These findings generate a useful tool for the recognizing of the variation in permafrost under climate change in permafrost regions on the QTP.


Funding information

This work was financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20020102, XDA20100103), and the National Natural Science Foundation of China (41601078, 41771060, 41601070, 41801060).


  1. Balsamo G, Albergel C, Beljaars A, Boussetta S, Brun E, Cloke H, Dee D, Dutra E, Munoz-Sabater J, Pappenberger F, de Rosnay P, Stockdale T, Vitart F (2015) ERA-interim/land: a global land surface reanalysis data set. Hydrol Earth Syst Sci 19(1):389–407CrossRefGoogle Scholar
  2. Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–U132CrossRefGoogle Scholar
  3. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO(2) growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104(47):18866–18870CrossRefGoogle Scholar
  4. Chang X, Jin H, Wang Y, Zhang Y, Zhou G, Che F, Zhao Y (2012) Influences of vegetation on permafrost: a review. Acta Ecol Sin 32(24):7981–7990CrossRefGoogle Scholar
  5. Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660CrossRefGoogle Scholar
  6. Chen B, Luo S, Lu S, Zhang Y, Ma D (2014) Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau. Clim Res 59(3):243–257CrossRefGoogle Scholar
  7. Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophy Res Earth Surf 112(F2)Google Scholar
  8. Chu D, Yang Y, Luobu J, Bianba C (2016) Applicability analysis of MERRA surface air temperature over the Qinghai-Xizang Plateau. Plateau Meteorology 35(2):337–350Google Scholar
  9. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  10. Ding M, Li L, Zhang Y, Liu L, Wang Z (2014) Temperature change and its elevation dependency on the Tibetan Plateau and its vicinity from 1971 to 2012. Resour Sci 36(7):1509–1518Google Scholar
  11. Du J, Duo B, Hu J, Liao J, Zhou M (2007) Climatic change of sunshine duration and its influencing factors over Tibet during the last 35 years. Acta Geograph Sin 62(5):492–500Google Scholar
  12. Duan A, Wu G, Zhang Q, Liu Y (2006) New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chin Sci Bull 51(8):989–992CrossRefGoogle Scholar
  13. Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan Plateau? Sci Rep 5Google Scholar
  14. Fang X, Luo S, Lyu S (2018) Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor Appl Climatol 1–13Google Scholar
  15. Feng S, Tang M (1998) New evidence for the Qinghai-Xizang(Tibet) Plateau as a pilot region of climatic fluctuation in China. Chin Sci Bull 43(6):633–633CrossRefGoogle Scholar
  16. Field CB, Raupach M (2004) Toward CO2 stabilization: issues, strategies, and consequences. Island Press, Washington, DCGoogle Scholar
  17. Frauenfeld OW, Zhang TJ, Serreze MC (2005) Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J Geophys Res-Atmos 110(D2)Google Scholar
  18. Guo D, Wang H (2012) The significant climate warming in the northern Tibetan Plateau and its possible causes. Int J Climatol 32(12):1775–1781CrossRefGoogle Scholar
  19. Hansson K, Šimůnek J, Mizoguchi M, Lundin L-C, Van Genuchten MT (2004) Water flow and heat transport in frozen soil. Vadose Zone J 3(2):693–704Google Scholar
  20. Hu G, Zhao L, Li R, Wu T, Wu X, Pang Q, Xiao Y, Qiao Y, Shi J (2015) Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China. Chin Geogr Sci 25(6):713–727CrossRefGoogle Scholar
  21. Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Qiao Y, Shi J, Li W, Cheng G (2016) New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. Int J Heat Mass Transf 95:815–823CrossRefGoogle Scholar
  22. Hu G, Zhao L, Wu X, Wu T, Li R, Xie C, Xiao Y, Pang Q, Liu G, Hao J, Shi J, Qiao Y (2017) A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan plateau. Geoderma 306:244–251CrossRefGoogle Scholar
  23. Hu G, Zhao L, Li AR, Wu X, Wu T, Zhu X, Pang Q, Liu GY, Du E, Zou D, Hao J, Li W (2019) Simulation of land surface heat fluxes in permafrost regions on the Qinghai-Tibetan Plateau using CMIP5 models. Atmos Res 220:155–168Google Scholar
  24. Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y (2019) Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 337:893–905CrossRefGoogle Scholar
  25. Hua W, Fan G, Zhang Y, Zhu L, Wen X, Zhang Y, Lai X, Wang B, Zhang M, Hu Y, Wu Q (2017) Trends and uncertainties in surface air temperature over the Tibetan Plateau, 1951–2013. Journal of Meteorological Research 31(2):420–430Google Scholar
  26. Hua W, Yang K, Fan G (2017) Uncertainty in hottest years ranking: analysis of Tibetan Plateau surface air temperature. Atmos Ocean Sci Lett 10(4):337–341CrossRefGoogle Scholar
  27. IPCC (2013) Climate change synthesis report, CambridgeGoogle Scholar
  28. Kang S, Xu Y, You Q, Fluegel W-A, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1)Google Scholar
  29. Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang H-M (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348(6242):1469–1472CrossRefGoogle Scholar
  30. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93(1):5–48CrossRefGoogle Scholar
  31. Lachenbruch AH (1994) Permafrost, the active layer, and changing climate. US Geological Survey, Reston, pp 2331–1258Google Scholar
  32. Li Y (2002) Analyses of cloudiness, sunshine, temperature and daily range on the eastern side of Qinghai-Xizang Plateau in recent 40 years. Plateau Meteorology 21(3):327–332Google Scholar
  33. Li L, Zhu X, Qin N, Wang Z, Wang Q, Zhou L (2003) Study on temperature variations and its anomaly patterns over Qinghai-Xizang Plateau. Plateau Meteorology 22(5):524–530Google Scholar
  34. Li C, Zhang TJ, Chen J (2004) Climatic change of Qinghai-Xizang Plateau region in recent 40-year reanalysis and surface observation data-contrast of observational data and NCEP, ECMWF surface air temperature and precipitation. Plateau Meteorology 23(Suppl 12):97–103Google Scholar
  35. Li S, Xu L, Guo Y, Qian W, Zhang G, Li C (2006) Change of annual air temperature over Qinghai-Tibet Plateau during recent 34 years. J Deser Res 26(1):27–34Google Scholar
  36. Li H, Fan G, Zhou D, Hua W, Liu Y, Li X (2008) Character of spring vegetation change in the Qinghai-Tibet Plateau and its influence on summer air temperature. Sci Geogr Sin 28(2):259–265CrossRefGoogle Scholar
  37. Li L, Chen X, Wang Z, Xu W, Tang H (2010) Climate change and its regional differences over the Tibetan Plateau. Adv Clim Chang Res 6(3):181–186Google Scholar
  38. Li R, Shihua LU, Han b, Gao Y (2012) Preliminary comparison and analyses of air temperature at 2 m height between three reanalysis data-sets and observation in the east of Qinghai-Xiang Plateau. Plateau Meteorology 31(6):1488–1502Google Scholar
  39. Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742CrossRefGoogle Scholar
  40. Liu X, Hou P (1998) Relationship between the climatic warming over the Qinghai-Xizang Plateau and its surrounding areas in recent 30 years and the elevation. Plateau Meteorology 17(3):245–245Google Scholar
  41. Liu G, Lu H (2010) Basic characteristics of major climatic factors on Qinghai-Tibet Plateau in recent 45 years. Geogr Res 29(12):2281–2288Google Scholar
  42. Liu X, Cheng Z, Yan L, Yin Z-Y (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Chang 68(3):164–174CrossRefGoogle Scholar
  43. Liu C, Yu Y, Xie J, Zhou X, Li J, Ge J (2015) Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau. Plateau Meteorol 34(3):653–665Google Scholar
  44. Ma L, Zhang T, Li Q, Frauenfeld OW, Qin D (2008) Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. J Geophys Res-Atmos 113(D15)Google Scholar
  45. Osterkamp TE (2005) The recent wanning of permafrost in Alaska. Glob Planet Chang 49(3–4):187–202CrossRefGoogle Scholar
  46. Pang Q, Zhao L, Li S (2011) Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet highway. J Glaciol Geocryol 33(2):349–356Google Scholar
  47. Payette S, Delwaide A, Caccianiga M, Beauchemin M (2004) Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys Res Lett 31(18)Google Scholar
  48. Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Chang 97(1–2):321–327CrossRefGoogle Scholar
  49. Qin Y, Wu T, Wu X, Li R, Xie C, Qiao Y, Hu G, Zhu X, Wang W, Shang W (2017) Assessment of reanalysis soil moisture products in the permafrost regions of the central of the Qinghai–Tibet Plateau. Hydrol Process 31(26):4647–4659CrossRefGoogle Scholar
  50. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221–227CrossRefGoogle Scholar
  51. Ren Y, Shi Y, Wang J, Zhang Y, Wang S (2012) An overview of temperature vrariations on the Qinghai-Tibetan plateau in the recent hundred years using UK CRU high resolution grid data. Journal of Lanzhou University. Nat Sci 48(6):63–68Google Scholar
  52. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, Da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA's modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648CrossRefGoogle Scholar
  53. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394CrossRefGoogle Scholar
  54. Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21(2):136–155CrossRefGoogle Scholar
  55. Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, Van Den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208CrossRefGoogle Scholar
  56. Simmons AJ, Jones PD, Bechtold VD, Beljaars ACM, Kallberg PW, Saarinen S, Uppala SM, Viterbo P, Wedi N (2004) Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J Geophys Res-Atmos 109(D24)Google Scholar
  57. Song C, Pei T, Zhou C (2012) Research progresses of surface temperature characteristic change over Tibetan Plateau since 1960. Prog Geogr 31(11):1503–1509Google Scholar
  58. Sun Y, Gao Q, Min J (2013) Comparison of reanalysis data and observation about summer/winter surface air temperature in Tibet. Plateau Meteorology 32(4):909–920Google Scholar
  59. Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earth’s Future 1(1):19–32CrossRefGoogle Scholar
  60. Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost-a review. Vadose Zone J 15(6):20CrossRefGoogle Scholar
  61. Wang S, Ye J (1995) An analysis of global warming during the last one hundred years. Sci Atmos Sin 19(5):545–545Google Scholar
  62. Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res-Atmos 117Google Scholar
  63. Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan plateau warming and precipitation changes in East Asia. Geophys Res Lett 35(14)Google Scholar
  64. Wang P, Tang G, Cao L, Liu Q, Ren Y (2012) Surface air temperature variability and its relationship with Altitude & Latitude over the Tibetan Plateau in 1981-2010. Clim Change Res 8(5):313–319Google Scholar
  65. Wu S, Yin Y, Zheng D, Yang Q (2005) Climate changes in the Tibetan Plateau during the last three decades. Acta Geograph Sin 60(1):3–11Google Scholar
  66. Wu, Q. and Zhang, T., 2008. Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res, 113(D13)Google Scholar
  67. Wu L, Zhang J (2014) Strong subsurface soil temperature feedbacks on summer climate variability over the arid/semi-arid regions of East Asia. Atmos Sci Lett 15(4):307–313Google Scholar
  68. Yanai M, Wu GX (2006) Effects of the Tibetan Plateau. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 513–549.Google Scholar
  69. Yang K, He J, Tang W, Qin J, Cheng CCK (2010) On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agric For Meteorol 150(1):38–46CrossRefGoogle Scholar
  70. Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Chang 112:79–91CrossRefGoogle Scholar
  71. Ye D, Gao Y (1979) The meteorology of the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing 278 ppGoogle Scholar
  72. You Q, Kang S, Pepin N, Fluegel W-A, Yan Y, Behrawan H, Huang J (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob Planet Chang 71(1–2):124–133CrossRefGoogle Scholar
  73. You Q, Jiang Z, Wang D, Pepin N, Kang S (2017) Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Clim Dyn 4:1–15Google Scholar
  74. Yu RC, Wang B, Zhou TJ (2004) Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J Clim 17(13):2702–2713CrossRefGoogle Scholar
  75. Zhang TJ (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43(4)Google Scholar
  76. Zhang R, Zuo Z (2011) Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J Clim 24(13):3309–3322CrossRefGoogle Scholar
  77. Zhang L, Zhao L, Li R, Gao L, Xiao Y, Qiao Y, Shi J (2016) Investigating the influence of soil moisture on albedo and soil thermodynamic parameters during the warm season in Tanggula Range. Tibetan Plateau J Glaciol Geocryology 38(2):351–358Google Scholar
  78. Zhao L (2004) The freezing-thawing processes of active layer and changes of seasonally frozen ground on the Tibetan Plateau. Paper for degree of doctor of philosophy, CAS, pp 25–39Google Scholar
  79. Zhao L, Cheng G, Li S, Zhao X, Wang S (2000) Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chin Sci Bull 45(23):2181–2187CrossRefGoogle Scholar
  80. Zhao T, Guo W, Fu C (2008) Calibrating and evaluating reanalysis surface temperature error by topographic correction. J Clim 21(6):1440–1446CrossRefGoogle Scholar
  81. Zheng R, Li D, Jiang Y (2015) New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming. Plateau Meteorology 34(6):1531–1539Google Scholar
  82. Zhou L, Du Z (2016) Regional differences in the surface energy budget over China: an evaluation of a selection of CMIP5 models. Theor Appl Climatol 124(1–2):241–266CrossRefGoogle Scholar
  83. Zhou T, Li Z (2002) Simulation of the east Asian summer monsoon using a variable resolution atmospheric GCM. Clim Dyn 19(2):167–180CrossRefGoogle Scholar
  84. Zhou T, Yu R (2006) Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J Clim 19(22):5843–5858CrossRefGoogle Scholar
  85. Zhu X, Liu Y, Wu G (2012) An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Sci China-Earth Sci 55(5):779–786CrossRefGoogle Scholar
  86. Zhu F, Cuo L, Zhang Y, Luo J-J, Lettenmaier DP, Lin Y, Liu Z (2017) Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013. Clim Dyn 1–19Google Scholar
  87. Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G (2017) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11(6):2527–2542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.School of Geographical SciencesNanjing University of Information Science & TechnologyNanjingChina
  3. 3.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations