Variability of extreme precipitation over Texas and its relation with climatic cycles

  • Nikhil Bhatia
  • Vijay P. Singh
  • Kyungtae LeeEmail author
Original Paper


Many hydrometeorological studies have evaluated the impact of climate variability on hydrologic extremes. Recent studies have shown that the varying state of climatic cycles has intensified the regional hydrologic cycle within a wide range of geographical regions in the state of Texas. These climatic cycles define numerous sea surface temperature and pressure anomalies which lead to heavy precipitation in a region. The objective of this paper is to quantify the impact of five major Atlantic and Pacific Ocean related climatic cycles, including (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI), on maximum daily precipitation within a year in various climate regions of Texas, using a weighted correlation approach incorporating Leave-One-Out Test (LOOT). The uncertainty in the estimated correlation coefficient is factored in by determining the sample correlation coefficient at the 95% confidence interval. The influence of these global scale climatic cycles on the regional hydrologic cycle is found to be governed by the integrated hydrometeorological properties of weather stations, including (i) station elevation, (ii) average temperature, and (iii) average total precipitation, in the months of extremes. Results of this study will help regional water boards prepare for extreme hydrometeorological events in a changing climate.



We would like to thank Department of Water Management and Hydrological Science and Department of Biological and Agricultural Engineering at the Texas A&M University, College Station, Texas, for providing us with the necessary facilities to carry out this research work.


  1. Alvares CA, Stape JL, Sentelhas PC, de Moraes G, Leonardo J, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728CrossRefGoogle Scholar
  2. Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. J Clim 14(9):2105–2128CrossRefGoogle Scholar
  3. Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22(7):795–799CrossRefGoogle Scholar
  4. Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6(3):181–185CrossRefGoogle Scholar
  5. Booth EL, Byrne JM, Johnson DL (2012) Climatic changes in western North America, 1950–2005. Int J Climatol 32(15):2283–2300CrossRefGoogle Scholar
  6. Cai W, Whetton P, Pittock A (2001) Fluctuations of the relationship between ENSO and northeast Australian rainfall. Clim Dyn 17(5–6):421–432CrossRefGoogle Scholar
  7. Chakravarty IM, Roy J, Laha RG (1967) Handbook of methods of applied statisticsGoogle Scholar
  8. Chan JC, Zhou W (2005) PDO, ENSO and the early summer monsoon rainfall over South China. Geophys Res Lett 32(8)Google Scholar
  9. Chen F-W, Liu C-W (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ 10(3):209–222CrossRefGoogle Scholar
  10. Chiew FHS, McMahon TA (2002) Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol Sci J 47(3):505–522CrossRefGoogle Scholar
  11. Curtis S (2008) The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season. Clim Dyn 30(4):343–351CrossRefGoogle Scholar
  12. Dai A (2013) The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim Dyn 41(3):633–646CrossRefGoogle Scholar
  13. Diaz HF, Eischeid JK (2007) Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys Res Lett 34(18)Google Scholar
  14. Dingman SL (2015) Physical hydrology, Waveland pressGoogle Scholar
  15. Essenwanger OM (2001) World survey of climatology. 1C. General climatology; 1C. Classification of climates, ElsevierGoogle Scholar
  16. Fan H, Hu J, He D (2013) Trends in precipitation over the low latitude highlands of Yunnan, China. J Geogr Sci 23(6):1107–1122CrossRefGoogle Scholar
  17. Fisher RA (1915) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4):507–521Google Scholar
  18. Francisco-Fernandez M, Quintela-del-Rio A (2016) Comparing simultaneous and pointwise confidence intervals for hydrological processes. PLoS One 11(2):e0147505CrossRefGoogle Scholar
  19. Gleason KL, Lawrimore JH, Levinson DH, Karl TR, Karoly DJ (2008) A revised US climate extremes index. J Clim 21(10):2124–2137CrossRefGoogle Scholar
  20. Gnanadesikan A, Stouffer RJ (2006) Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophys Res Lett 33(22)Google Scholar
  21. Goodess C, Jones P (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22(13):1593–1615CrossRefGoogle Scholar
  22. Goodrich GB, Walker JM (2011) The influence of the PDO on winter precipitation during high-and low-index ENSO conditions in the eastern United States. Phys Geogr 32(4):295–312CrossRefGoogle Scholar
  23. Greenwood PE, Nikulin MS (1996) A guide to chi-squared testing, John Wiley & SonsGoogle Scholar
  24. Haiden T, Pistotnik G (2009) Intensity-dependent parameterization of elevation effects in precipitation analysis. Adv Geosci 20:33–38CrossRefGoogle Scholar
  25. Hanson LS, Vogel R (2008) The probability distribution of daily rainfall in the United States, pp. 1-10Google Scholar
  26. Henderson KG, Robinson PJ (1994) Relationships between the Pacific/North American teleconnection patterns and precipitation events in the South-Eastern USA. Int J Climatol 14(3):307–323CrossRefGoogle Scholar
  27. Houston TG, Changnon SA (2007) Freezing rain events: a major weather hazard in the conterminous US. Nat Hazards 40(2):485–494CrossRefGoogle Scholar
  28. Hu Q, Feng S (2008) Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillation. J Clim 21(11):2371–2383CrossRefGoogle Scholar
  29. Hu Q, Feng S (2012) AMO-and ENSO-driven summertime circulation and precipitation variations in North America. J Clim 25(19):6477–6495CrossRefGoogle Scholar
  30. Hurrell JW (2002) Decadal trends in the North Atlantic oscillation Clim Chang Eval Recent Future. Clim Chang 4:201Google Scholar
  31. Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic oscillation. J Mar Syst 79(3–4):231–244CrossRefGoogle Scholar
  32. Hurrell JW, Van Loon H (1997) Climatic change at high elevation sites, pp. 69-94, SpringerGoogle Scholar
  33. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. The North Atlantic Oscillation: climatic significance and environmental impact 134, 1–35Google Scholar
  34. Johansson Å (2007) Prediction skill of the NAO and PNA from daily to seasonal time scales. J Clim 20(10):1957–1975CrossRefGoogle Scholar
  35. Kalkomey CT (1997) Potential risks when using seismic attributes as predictors of reservoir properties. Lead Edge 16(3):247–251CrossRefGoogle Scholar
  36. Karl T, Koss WJ (1984) Regional and national monthly, seasonal, and annual temperature weighted by area, 1895-1983Google Scholar
  37. Kawamura R, Sugi M, Sato N (1995) Interdecadal and interannual variability in the northern extratropical circulation simulated with the JMA global model. Part I: wintertime leading mode. J Clim 8(12):3006–3019CrossRefGoogle Scholar
  38. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985CrossRefGoogle Scholar
  39. Kim J, Fessler JA (2004) Intensity-based image registration using robust correlation coefficients. IEEE Trans Med Imaging 23(11):1430–1444CrossRefGoogle Scholar
  40. Knudsen MF, Seidenkrantz M-S, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Commun 2:178CrossRefGoogle Scholar
  41. Köppen W (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol Z 1(21):5–226Google Scholar
  42. Krause P, Boyle D, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97CrossRefGoogle Scholar
  43. Kripalani R, Kulkarni A (2001) Monsoon rainfall variations and teleconnections over South and East Asia. Int J Climatol 21(5):603–616CrossRefGoogle Scholar
  44. Kurtzman D, Scanlon BR (2007) El Nino–Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in the southern and central United States: evaluation of spatial distribution and predictions. Water Resour Res 43(10)Google Scholar
  45. Lamb P, Peppler R (1991) West Africa, Teleconnections Linking Worldwide Climate Anomalies MH Glantz, RW Katz, N. Nicholls, 121–190, Cambridge Univ. Press, New YorkGoogle Scholar
  46. Leathers DJ, Yarnal B, Palecki MA (1991) The Pacific/North American teleconnection pattern and United States climate. Part I: regional temperature and precipitation associations. J Clim 4(5):517–528CrossRefGoogle Scholar
  47. Lu R, Dong B (2005) Impact of Atlantic Sea surface temperature anomalies on the summer climate in the western North Pacific during 1997–1998. J Geophys Res 110(D16)Google Scholar
  48. Lu H, Ip E, Scott J, Foster P, Vickers M, Baxter LL (2010) Effects of particle shape and size on devolatilization of biomass particle. Fuel 89(5):1156–1168CrossRefGoogle Scholar
  49. Lu A, Jia S, Zhu V, Yan H, Duan S, Yao Z (2011) El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecastingGoogle Scholar
  50. MacDonald GM, Case RA (2005) Variations in the Pacific Decadal Oscillation over the past millennium. Geophys Res Lett 32(8)Google Scholar
  51. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44CrossRefGoogle Scholar
  52. McMahon TA, Peel MC, Vogel RM, Pegram GG (2007) Global streamflows–part 3: country and climate zone characteristics. J Hydrol 347(3–4):272–291CrossRefGoogle Scholar
  53. Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. NATURE 470(7334):378–381CrossRefGoogle Scholar
  54. Minobe S (2000) Spatio-temporal structure of the pentadecadal variability over the North Pacific. Prog Oceanogr 47(2–4):381–408CrossRefGoogle Scholar
  55. Montanari A (2007) What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol Process 21(6):841–845CrossRefGoogle Scholar
  56. Niven EB, Deutsch CV (2012) Calculating a robust correlation coefficient and quantifying its uncertainty. Comput Geosci 40:1–9CrossRefGoogle Scholar
  57. Nogueira RC, Keim BD (2010) Annual volume and area variations in tropical cyclone rainfall over the eastern United States. J Clim 23(16):4363–4374CrossRefGoogle Scholar
  58. NWSI, N.W.S.I. (2017) Observational quality control - general (National Weather Service Instruction 10-1305). Department of Commerce, N.O.A.A. (ed)Google Scholar
  59. Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic oscillation. Oecologia 128(1):1–14CrossRefGoogle Scholar
  60. Parazoo NC, Barnes E, Worden J, Harper AB, Bowman KB, Frankenberg C, Wolf S, Litvak M, Keenan TF (2015) Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region. Glob Biogeochem Cycles 29(8):1247–1265CrossRefGoogle Scholar
  61. Pearson K (1920) Notes on the history of correlation. Biometrika 13(1):25–45CrossRefGoogle Scholar
  62. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4(2):439–473CrossRefGoogle Scholar
  63. Pielke RA Jr, Gratz J, Landsea CW, Collins D, Saunders MA, Musulin R (2008) Normalized hurricane damage in the United States: 1900–2005. Nat Hazards Rev 9(1):29–42CrossRefGoogle Scholar
  64. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing, Cambridge university pressGoogle Scholar
  65. Quadrelli R, Wallace JM (2004) A simplified linear framework for interpreting patterns of northern hemisphere wintertime climate variability. J Clim 17(19):3728–3744CrossRefGoogle Scholar
  66. Ramos MH, Mathevet T, Thielen J, Pappenberger F (2010) Communicating uncertainty in hydro-meteorological forecasts: mission impossible? Meteorol Appl 17(2):223–235CrossRefGoogle Scholar
  67. Renard B, Lall U (2014) Regional frequency analysis conditioned on large-scale atmospheric or oceanic fields. Water Resour Res 50(12):9536–9554CrossRefGoogle Scholar
  68. Rolf A, de By R (2000) Principles of geographic information systems. The International Institute for Aerospace Survey and Earth Sciences (ITC), Hengelosestraat 99Google Scholar
  69. Ropelewski CF, Halpert MS (1996) Quantifying southern oscillation-precipitation relationships. J Clim 9(5):1043–1059CrossRefGoogle Scholar
  70. Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19(2):135–141CrossRefGoogle Scholar
  71. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. NATURE 367(6465):723–726CrossRefGoogle Scholar
  72. Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Clim 18(21):4355–4373CrossRefGoogle Scholar
  73. Shukla J, Wallace J (1983) Numerical simulation of the atmospheric response to equatorial Pacific Sea surface temperature anomalies. J Atmos Sci 40(7):1613–1630CrossRefGoogle Scholar
  74. Squires MF, Lawrimore JH, Heim RR Jr, Robinson DA, Gerbush MR, Estilow TW (2014) The regional snowfall index. Bull Am Meteorol Soc 95(12):1835–1848CrossRefGoogle Scholar
  75. Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc 69(347):730–737CrossRefGoogle Scholar
  76. Sutton RT, Hodson DL (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20(5):891–907CrossRefGoogle Scholar
  77. Tippett MK, Sobel AH, Camargo SJ, Allen JT (2014) An empirical relation between US tornado activity and monthly environmental parameters. J Clim 27(8):2983–2999CrossRefGoogle Scholar
  78. Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Economic geography 46(sup1), 234–240Google Scholar
  79. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47(1–2):123–138CrossRefGoogle Scholar
  80. Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Clim 13(24):4358–4365CrossRefGoogle Scholar
  81. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9(6):303–319CrossRefGoogle Scholar
  82. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1218CrossRefGoogle Scholar
  83. Trenberth KE, Hurrell JW, Stepaniak DP (2006) The Asian monsoon, pp. 67-87, SpringerGoogle Scholar
  84. Troup A (1965) The ‘southern oscillation’. Q J R Meteorol Soc 91(390):490–506CrossRefGoogle Scholar
  85. Visbeck M, Chassignet E, Curry R, Delworth T, Dickson R, Krahmann G (2003) The North Atlantic oscillation: climatic significance and environmental impact. Geophys Monogr 134Google Scholar
  86. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109(4):784–812CrossRefGoogle Scholar
  87. Wang G, Kleeman R, Smith N, Tseitkin F (2002) The BMRC coupled general circulation model ENSO forecast system. Mon Weather Rev 130(4):975–991CrossRefGoogle Scholar
  88. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO (2008) Mid-to Late Holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828CrossRefGoogle Scholar
  89. Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32(5):663–674CrossRefGoogle Scholar
  90. Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C (2011) A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat Geosci 4(9):611–614CrossRefGoogle Scholar
  91. Zhu L, Frauenfeld OW, Quiring SM (2013) Seasonal tropical cyclone precipitation in Texas: a statistical modeling approach based on a 60 year climatology. J Geophys Res 118(16):8842–8856Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Water Management and Hydrological ScienceTexas A & M UniversityCollege StationUSA
  2. 2.Department of Biological and Agricultural Engineering & Zachry Department of Civil EngineeringTexas A & M UniversityCollege StationUSA
  3. 3.Department of Biological and Agricultural EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations