Skip to main content

Advertisement

Log in

Variability of extreme precipitation over Texas and its relation with climatic cycles

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Many hydrometeorological studies have evaluated the impact of climate variability on hydrologic extremes. Recent studies have shown that the varying state of climatic cycles has intensified the regional hydrologic cycle within a wide range of geographical regions in the state of Texas. These climatic cycles define numerous sea surface temperature and pressure anomalies which lead to heavy precipitation in a region. The objective of this paper is to quantify the impact of five major Atlantic and Pacific Ocean related climatic cycles, including (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI), on maximum daily precipitation within a year in various climate regions of Texas, using a weighted correlation approach incorporating Leave-One-Out Test (LOOT). The uncertainty in the estimated correlation coefficient is factored in by determining the sample correlation coefficient at the 95% confidence interval. The influence of these global scale climatic cycles on the regional hydrologic cycle is found to be governed by the integrated hydrometeorological properties of weather stations, including (i) station elevation, (ii) average temperature, and (iii) average total precipitation, in the months of extremes. Results of this study will help regional water boards prepare for extreme hydrometeorological events in a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, de Moraes G, Leonardo J, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728

    Google Scholar 

  • Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. J Clim 14(9):2105–2128

    Google Scholar 

  • Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22(7):795–799

    Google Scholar 

  • Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6(3):181–185

    Google Scholar 

  • Booth EL, Byrne JM, Johnson DL (2012) Climatic changes in western North America, 1950–2005. Int J Climatol 32(15):2283–2300

    Google Scholar 

  • Cai W, Whetton P, Pittock A (2001) Fluctuations of the relationship between ENSO and northeast Australian rainfall. Clim Dyn 17(5–6):421–432

    Google Scholar 

  • Chakravarty IM, Roy J, Laha RG (1967) Handbook of methods of applied statistics

  • Chan JC, Zhou W (2005) PDO, ENSO and the early summer monsoon rainfall over South China. Geophys Res Lett 32(8)

  • Chen F-W, Liu C-W (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ 10(3):209–222

    Google Scholar 

  • Chiew FHS, McMahon TA (2002) Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol Sci J 47(3):505–522

    Google Scholar 

  • Curtis S (2008) The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season. Clim Dyn 30(4):343–351

    Google Scholar 

  • Dai A (2013) The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim Dyn 41(3):633–646

    Google Scholar 

  • Diaz HF, Eischeid JK (2007) Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys Res Lett 34(18)

  • Dingman SL (2015) Physical hydrology, Waveland press

  • Essenwanger OM (2001) World survey of climatology. 1C. General climatology; 1C. Classification of climates, Elsevier

  • Fan H, Hu J, He D (2013) Trends in precipitation over the low latitude highlands of Yunnan, China. J Geogr Sci 23(6):1107–1122

    Google Scholar 

  • Fisher RA (1915) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4):507–521

    Google Scholar 

  • Francisco-Fernandez M, Quintela-del-Rio A (2016) Comparing simultaneous and pointwise confidence intervals for hydrological processes. PLoS One 11(2):e0147505

    Google Scholar 

  • Gleason KL, Lawrimore JH, Levinson DH, Karl TR, Karoly DJ (2008) A revised US climate extremes index. J Clim 21(10):2124–2137

    Google Scholar 

  • Gnanadesikan A, Stouffer RJ (2006) Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophys Res Lett 33(22)

  • Goodess C, Jones P (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22(13):1593–1615

    Google Scholar 

  • Goodrich GB, Walker JM (2011) The influence of the PDO on winter precipitation during high-and low-index ENSO conditions in the eastern United States. Phys Geogr 32(4):295–312

    Google Scholar 

  • Greenwood PE, Nikulin MS (1996) A guide to chi-squared testing, John Wiley & Sons

  • Haiden T, Pistotnik G (2009) Intensity-dependent parameterization of elevation effects in precipitation analysis. Adv Geosci 20:33–38

    Google Scholar 

  • Hanson LS, Vogel R (2008) The probability distribution of daily rainfall in the United States, pp. 1-10

  • Henderson KG, Robinson PJ (1994) Relationships between the Pacific/North American teleconnection patterns and precipitation events in the South-Eastern USA. Int J Climatol 14(3):307–323

    Google Scholar 

  • Houston TG, Changnon SA (2007) Freezing rain events: a major weather hazard in the conterminous US. Nat Hazards 40(2):485–494

    Google Scholar 

  • Hu Q, Feng S (2008) Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillation. J Clim 21(11):2371–2383

    Google Scholar 

  • Hu Q, Feng S (2012) AMO-and ENSO-driven summertime circulation and precipitation variations in North America. J Clim 25(19):6477–6495

    Google Scholar 

  • Hurrell JW (2002) Decadal trends in the North Atlantic oscillation Clim Chang Eval Recent Future. Clim Chang 4:201

    Google Scholar 

  • Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic oscillation. J Mar Syst 79(3–4):231–244

    Google Scholar 

  • Hurrell JW, Van Loon H (1997) Climatic change at high elevation sites, pp. 69-94, Springer

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. The North Atlantic Oscillation: climatic significance and environmental impact 134, 1–35

  • Johansson Å (2007) Prediction skill of the NAO and PNA from daily to seasonal time scales. J Clim 20(10):1957–1975

    Google Scholar 

  • Kalkomey CT (1997) Potential risks when using seismic attributes as predictors of reservoir properties. Lead Edge 16(3):247–251

    Google Scholar 

  • Karl T, Koss WJ (1984) Regional and national monthly, seasonal, and annual temperature weighted by area, 1895-1983

  • Kawamura R, Sugi M, Sato N (1995) Interdecadal and interannual variability in the northern extratropical circulation simulated with the JMA global model. Part I: wintertime leading mode. J Clim 8(12):3006–3019

    Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985

    Google Scholar 

  • Kim J, Fessler JA (2004) Intensity-based image registration using robust correlation coefficients. IEEE Trans Med Imaging 23(11):1430–1444

    Google Scholar 

  • Knudsen MF, Seidenkrantz M-S, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Commun 2:178

    Google Scholar 

  • Köppen W (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol Z 1(21):5–226

    Google Scholar 

  • Krause P, Boyle D, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97

    Google Scholar 

  • Kripalani R, Kulkarni A (2001) Monsoon rainfall variations and teleconnections over South and East Asia. Int J Climatol 21(5):603–616

    Google Scholar 

  • Kurtzman D, Scanlon BR (2007) El Nino–Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in the southern and central United States: evaluation of spatial distribution and predictions. Water Resour Res 43(10)

  • Lamb P, Peppler R (1991) West Africa, Teleconnections Linking Worldwide Climate Anomalies MH Glantz, RW Katz, N. Nicholls, 121–190, Cambridge Univ. Press, New York

  • Leathers DJ, Yarnal B, Palecki MA (1991) The Pacific/North American teleconnection pattern and United States climate. Part I: regional temperature and precipitation associations. J Clim 4(5):517–528

    Google Scholar 

  • Lu R, Dong B (2005) Impact of Atlantic Sea surface temperature anomalies on the summer climate in the western North Pacific during 1997–1998. J Geophys Res 110(D16)

  • Lu H, Ip E, Scott J, Foster P, Vickers M, Baxter LL (2010) Effects of particle shape and size on devolatilization of biomass particle. Fuel 89(5):1156–1168

    Google Scholar 

  • Lu A, Jia S, Zhu V, Yan H, Duan S, Yao Z (2011) El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting

  • MacDonald GM, Case RA (2005) Variations in the Pacific Decadal Oscillation over the past millennium. Geophys Res Lett 32(8)

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44

    Google Scholar 

  • McMahon TA, Peel MC, Vogel RM, Pegram GG (2007) Global streamflows–part 3: country and climate zone characteristics. J Hydrol 347(3–4):272–291

    Google Scholar 

  • Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. NATURE 470(7334):378–381

    Google Scholar 

  • Minobe S (2000) Spatio-temporal structure of the pentadecadal variability over the North Pacific. Prog Oceanogr 47(2–4):381–408

    Google Scholar 

  • Montanari A (2007) What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol Process 21(6):841–845

    Google Scholar 

  • Niven EB, Deutsch CV (2012) Calculating a robust correlation coefficient and quantifying its uncertainty. Comput Geosci 40:1–9

    Google Scholar 

  • Nogueira RC, Keim BD (2010) Annual volume and area variations in tropical cyclone rainfall over the eastern United States. J Clim 23(16):4363–4374

    Google Scholar 

  • NWSI, N.W.S.I. (2017) Observational quality control - general (National Weather Service Instruction 10-1305). Department of Commerce, N.O.A.A. (ed)

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic oscillation. Oecologia 128(1):1–14

    Google Scholar 

  • Parazoo NC, Barnes E, Worden J, Harper AB, Bowman KB, Frankenberg C, Wolf S, Litvak M, Keenan TF (2015) Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region. Glob Biogeochem Cycles 29(8):1247–1265

    Google Scholar 

  • Pearson K (1920) Notes on the history of correlation. Biometrika 13(1):25–45

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4(2):439–473

    Google Scholar 

  • Pielke RA Jr, Gratz J, Landsea CW, Collins D, Saunders MA, Musulin R (2008) Normalized hurricane damage in the United States: 1900–2005. Nat Hazards Rev 9(1):29–42

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing, Cambridge university press

  • Quadrelli R, Wallace JM (2004) A simplified linear framework for interpreting patterns of northern hemisphere wintertime climate variability. J Clim 17(19):3728–3744

    Google Scholar 

  • Ramos MH, Mathevet T, Thielen J, Pappenberger F (2010) Communicating uncertainty in hydro-meteorological forecasts: mission impossible? Meteorol Appl 17(2):223–235

    Google Scholar 

  • Renard B, Lall U (2014) Regional frequency analysis conditioned on large-scale atmospheric or oceanic fields. Water Resour Res 50(12):9536–9554

    Google Scholar 

  • Rolf A, de By R (2000) Principles of geographic information systems. The International Institute for Aerospace Survey and Earth Sciences (ITC), Hengelosestraat 99

  • Ropelewski CF, Halpert MS (1996) Quantifying southern oscillation-precipitation relationships. J Clim 9(5):1043–1059

    Google Scholar 

  • Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19(2):135–141

    Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. NATURE 367(6465):723–726

    Google Scholar 

  • Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Clim 18(21):4355–4373

    Google Scholar 

  • Shukla J, Wallace J (1983) Numerical simulation of the atmospheric response to equatorial Pacific Sea surface temperature anomalies. J Atmos Sci 40(7):1613–1630

    Google Scholar 

  • Squires MF, Lawrimore JH, Heim RR Jr, Robinson DA, Gerbush MR, Estilow TW (2014) The regional snowfall index. Bull Am Meteorol Soc 95(12):1835–1848

    Google Scholar 

  • Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc 69(347):730–737

    Google Scholar 

  • Sutton RT, Hodson DL (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20(5):891–907

    Google Scholar 

  • Tippett MK, Sobel AH, Camargo SJ, Allen JT (2014) An empirical relation between US tornado activity and monthly environmental parameters. J Clim 27(8):2983–2999

    Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Economic geography 46(sup1), 234–240

    Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47(1–2):123–138

    Google Scholar 

  • Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Clim 13(24):4358–4365

    Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9(6):303–319

    Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1218

    Google Scholar 

  • Trenberth KE, Hurrell JW, Stepaniak DP (2006) The Asian monsoon, pp. 67-87, Springer

  • Troup A (1965) The ‘southern oscillation’. Q J R Meteorol Soc 91(390):490–506

    Google Scholar 

  • Visbeck M, Chassignet E, Curry R, Delworth T, Dickson R, Krahmann G (2003) The North Atlantic oscillation: climatic significance and environmental impact. Geophys Monogr 134

    Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109(4):784–812

    Google Scholar 

  • Wang G, Kleeman R, Smith N, Tseitkin F (2002) The BMRC coupled general circulation model ENSO forecast system. Mon Weather Rev 130(4):975–991

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO (2008) Mid-to Late Holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828

    Google Scholar 

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32(5):663–674

    Google Scholar 

  • Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C (2011) A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat Geosci 4(9):611–614

    Google Scholar 

  • Zhu L, Frauenfeld OW, Quiring SM (2013) Seasonal tropical cyclone precipitation in Texas: a statistical modeling approach based on a 60 year climatology. J Geophys Res 118(16):8842–8856

    Google Scholar 

Download references

Acknowledgments

We would like to thank Department of Water Management and Hydrological Science and Department of Biological and Agricultural Engineering at the Texas A&M University, College Station, Texas, for providing us with the necessary facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungtae Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Climatic cycles drive sea surface temperature and pressure anomalies which affect the regional hydrologic cycle.

• Hydrometeorologic extremes in climate regions of Texas are triggered and intensified by the variations in Atlantic and Pacific Ocean–based climatic cycles.

• Extreme precipitation with longer return periods (more than 10 years) across Texas is found to be more significantly correlated than precipitation with shorter return periods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, N., Singh, V.P. & Lee, K. Variability of extreme precipitation over Texas and its relation with climatic cycles. Theor Appl Climatol 138, 449–467 (2019). https://doi.org/10.1007/s00704-019-02840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-02840-w

Navigation