Advertisement

Theoretical and Applied Climatology

, Volume 138, Issue 1–2, pp 249–261 | Cite as

Analysis of the diurnal to seasonal variability of solar radiation in Douala, Cameroon

  • D. NdarweEmail author
  • D. Bongue
  • D. Monkam
  • P. Moudi
  • N. Philippon
  • C. A. KenfacK
Original Paper
  • 95 Downloads

Abstract

One of the solutions for resolving the problem of energy production deficit in Central Africa is to promote renewable energy sources. The knowledge of the solar variability represents a determining factor for design, dimensioning, performance assessment, and energetic management of renewable energy conversion systems. In this work, we analyze the behaviour of solar radiation from diurnal to seasonal time scales for the region of Douala, the largest industrial city of Cameroon. Observed data of temperature, sunshine duration and precipitation, and satellite estimates of solar radiation (from Soda Solar Project) and cloudiness (acquired from Meteosat Second Generation) were used. The results show that the solar radiation annual cycle at Douala can be decomposed into four seasons: the main dry season in December–January–February (DJF) which corresponds to the most illuminated season, the main rainy season in June–July–August–September (JJAS) which is the least illuminated, and two intermediate periods, March–April–May (MAM) and October–November (ON) which correspond to semi-illuminated periods. Using a hierarchical clustering analysis (HCA), we found that Douala usually experiences five main types of solar radiation diurnal cycles depicting very bright to obscure days. A characterization of sky conditions during these five diurnal cycles shows a predominance of low and high opaque clouds during obscure days.

Nomenclature

difSR

Daily diffuse solar radiation (Wh/m2/day)

dirSR

Daily direct solar radiation (Wh/m2/day)

DJF

December–January–February

GSR

Horizontal global solar radiation (Wh/m2/day)

JJAS

June–July–August–September

MAM

March–April–May

ON

October–November

Nm

Cloudiness (Octas)

Notes

Acknowledgements

The authors are grateful to the Abdus Salam International Centre for Theoretical Physics (ICTP) for its support through the OEA-AC-71 project at the Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ) of the University of Douala (Cameroon). They acknowledge also ICARE Data and Service Center (Lille, France) for giving access to the 2008–2015 MSG Cloud Analysis product archives. They are thankful to Claire Thomas, TRANSVALOR, for her support with regard to the HelioClim3-v5 data extraction over our study region and its characterization.

References

  1. Almorox J (2011) Estimating global solar radiation from common meteorological data in Aranjuez, Spain. Turk J Phys 35(1):53–64Google Scholar
  2. Annandale J, Jovanovic N, Benade N, Allen R (2002) Software for missing data error analysis of Penman-Monteith reference evapotranspiration. Irrig Sci 21(2):57–67CrossRefGoogle Scholar
  3. Ayompe LM, Duffy A (2014) An assessment of the energy generation potential of photovoltaic systems in Cameroon using satellite-derived solar radiation datasets. Sustainable Energy Technol Assess 7:257–264CrossRefGoogle Scholar
  4. Besharat F, Dehghan A, Faghih AR (2013) Empirical models for estimating global solar radiation: a review and case study. Renew Sust Energ Rev 21:798–821.  https://doi.org/10.1016/j.rser.2012.12.043 CrossRefGoogle Scholar
  5. Beyer HG, Costanzo C, Heinemann D (1996) Modifications of the Heliosat procedure for irradiance estimates from satellite images. Sol Energy 56(3):207–212CrossRefGoogle Scholar
  6. Boch G, Boileau E, Benard C (1981) Modélisation de l’irradiation solaire au pas de temps de l’heure. Revue de Physique Appliquée 16(5):237–247CrossRefGoogle Scholar
  7. Coley PF, Jonas PR (1997) The contribution of cloud inhomogeneities and droplet concentration to the albedo of broken-cloud fields. Q J R Meteorol Soc 123(543):1931–1944CrossRefGoogle Scholar
  8. David A, Ngwa NR (2013) Global solar radiation of some regions of Cameroon using the linear Angstrom and non-linear polynomial relations (part I) model development. International Journal of Renewable Energy Research (IJRER) 3(4):984–992Google Scholar
  9. Derrien M, Le Gléau H (2010) Improvement of cloud detection near sunrise and sunset by temporal-differencing and region-growing techniques with real-time SEVIRI. Int J Remote Sens 31(7):1765–1780CrossRefGoogle Scholar
  10. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes. John Wiley & SonsGoogle Scholar
  11. Enete IC, Awuh ME, Ikekpeazu FO (2014) Assessment of Urban Heat Island (Uhi) situation in Douala Metropolis, Cameroon. Journal of Geography and Earth Sciences 2(1):55–57Google Scholar
  12. Erbs DG, Klein SA, Duffie JA (1982) Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol Energy 28(4):293–302CrossRefGoogle Scholar
  13. Guévart E, Noeske J, Gérémie SG, Fouda AB, Mouangue A, Manga B (2010) Weather and cholera: epidemic in Douala, Cameroon in 2004. Medecine tropicale: revue du Corps de sante colonial 70(4):407–408Google Scholar
  14. Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain Div 108(3):225–230Google Scholar
  15. Hassanalian M, Throneberry G, Ali M, Ben Ayed S, Abdelkefi A (2018) Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the albatross. J Therm Biol 71:112–122CrossRefGoogle Scholar
  16. Hoyer-Klick C, Lefèvre M, Oumbe A, Homscheidt MS, Wald L (2010) User’s guide to the SoDa and SOLEMI services—toward the solar energy radiation resources MACC-RAD service.MACC Project ReportGoogle Scholar
  17. Kapseu C, Yossa LTMN, Toko DT, Ghogomu PM (2014) Evaluation of the production of solar photovoltaic cells from Central Africa minerals: the case of Cameroon. J Energy 1(5):257–264Google Scholar
  18. Karl P (1895) Notes on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242CrossRefGoogle Scholar
  19. Kemajou A, Tseuyep A, Egbewatt NE (2012) Le confort thermique en climat tropical humide vers un réaménagement des normes ergonomiques. Rev Energ Renouv 15(3):427–438Google Scholar
  20. Kerkouche K et al (2013) Evaluation de l’irradiation solaire globale sur une surface inclinée selon différents modèles pour le site de Bouzaréah. Rev Energ Renouv 16.2:269–284Google Scholar
  21. Legros G, Havet I, Bruce N, Bonjour S, Rijal K, Takada M (2009) The energy access situation in developing countries: a review focusing on the least developed countries and sub-Saharan Africa. United Nations Development Programme and World Health Organization, New YorkGoogle Scholar
  22. Lenouo A, Monkam D, Mkankam Kamga F (2009) Analyse des conditions météorologiques pour la sécurité aérienne à Douala. La Météorol 65:65–46Google Scholar
  23. Mas’ud AA, Wirba AV, Muhammad-Sukki F, Mas’ud IA, Munir AB, Yunus NM (2015) An assessment of renewable energy readiness in Africa: case study of Nigeria and Cameroon. Renew Sust Energ Rev 51:775–784CrossRefGoogle Scholar
  24. Mboumboue E, Njomo D (2016) Potential contribution of renewables to the improvement of living conditions of poor rural households in developing countries: Cameroon’s case study. Renew Sust Energ Rev 61:266–279CrossRefGoogle Scholar
  25. Molua EL (2006) Climatic trends in Cameroon: implications for agricultural management. Clim Res 30(3):255–262CrossRefGoogle Scholar
  26. Nematchoua MK, Raminosoa CR, Mamiharijaona R, René T, Orosa JA, Elvis W, Meukam P (2015a) Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: case of Cameroon. Renew Sust Energ Rev 50:1192–1202CrossRefGoogle Scholar
  27. Nematchoua MK, Roshan GR, Tchinda R, Nasrabadi T, Ricciardi P (2015b) Climate change and its role in forecasting energy demand in buildings: a case study of Douala City, Cameroon. J Earth Syst Sci 124(1):269–281CrossRefGoogle Scholar
  28. Ngnikam E (2006) Énergie et écodéveloppement au Cameroun. Revue hélio-international Google Scholar
  29. NKUE V, NJOMO D (2009) Analyse du système énergétique camerounais dans une perspective de développement soutenable. Rev Energ 588:102–116Google Scholar
  30. Odutayo A, Wong CX, Hsiao AJ, Hopewell S, Altman DG, Emdin CA (2016) Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and metaanalysis. BMJ 354:i4482CrossRefGoogle Scholar
  31. Pecenak ZK, Mejia FA, Kurtz B, Evan A, Kleissl J (2016) Simulating irradiance enhancement dependence on cloud optical depth and solar zenith angle. Sol Energy 136:675–681CrossRefGoogle Scholar
  32. Philippon N, De Lapparent B, Gond V, Sèze G, Martiny N, Camberlin P et al (2016) Analysis of the diurnal cycles for a better understanding of the mean annual cycle of forests greenness in Central Africa. Agric For Meteorol 223:81–94CrossRefGoogle Scholar
  33. Qu Z, Oumbe A, Blanc P, Espinar B, Gesell G, Gschwind B, Klüser L, Lefèvre M, Saboret L, Schroedter-Homscheidt M, Wald L (2017) Fast radiative transfer parameterisation for assessing the surface solar irradiance: the Heliosat-4 method. Meteorol Z 26(1):33–57CrossRefGoogle Scholar
  34. Ramachandra TV, Jain R, Krishnadas G (2011) Hotspots of solar potential in India. Renew Sust Energ Rev 15(6):3178–3186CrossRefGoogle Scholar
  35. Rigollier C, Lefèvre M, Wald L (2004) The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol Energy 77(2):159–169CrossRefGoogle Scholar
  36. Schneider U (2005) Receipt of SYNOP reports at DWD during the period 1986-2005 and the temporal coverage of accumulated monthly precipitation totals. Europe 1001:1999Google Scholar
  37. Schneider U, Henning D, Hauschild H, Reiss M, Rudolf B (1992) Zur Berechnung monatlicher Niederschlagshöhen aus synoptischen Meldungen. Meteorol Z 1:22–31CrossRefGoogle Scholar
  38. Suchel JB (1987) Les Climats du Cameroun, Thèse Doctorat d’Etat, Université Bordeaux III, Bordeaux, Vol. 4,p. 1186Google Scholar
  39. Tchanche B (2014) The necessity of sustainable and affordable energy solutions for industrial companies in Cameroon. In 1st International e-Conference on Energies. Multidisciplinary Digital Publishing InstituteGoogle Scholar
  40. Zhou MC, Ishidaira H, Hapuarachchi HP, Magome J, Kiem AS, Takeuchi K (2006) Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. J Hydrol 327(1-2):151–173CrossRefGoogle Scholar
  41. Zhuravleva TB, Nasrtdinov IM, Russkova TV (2017) Influence of 3D cloud effects on spatial-angular characteristics of the reflected solar radiation field. Atmos Oceanic Opt 30(1):103–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CEPAMOQ, Faculty of ScienceUniversity of DoualaDoualaCameroon
  2. 2.Department of Physics, Faculty of ScienceUniversity of DoualaDoualaCameroon
  3. 3.Faculty of ScienceUniversity of Yaounde IYaoundeCameroon
  4. 4.ASECNA, Douala meteorological officeDoualaCameroon
  5. 5.IGE, UGA-CNRS-IRD-INPGrenobleFrance

Personalised recommendations