Columnar aerosol measurements in a continental southeastern Europe site: climatology and trends

  • Emil CarsteaEmail author
  • Konstantinos Fragkos
  • Nikolaos Siomos
  • Bogdan Antonescu
  • Livio Belegante
Original Paper


Monitoring of aerosols and their temporal evolution is very important for climate and air quality studies. In this study, we present a climatology of aerosol optical and microphysical properties over a continental southeastern European area based on 9 years of observations from a Cimel sun-photometer operating at Magurele (Romania) in the framework of AErosol RObotic NETwork (AERONET). The site is characterized by high intra-annual and inter-annual variability of the total aerosol optical depth (AOD), which has two peaks, during March and August. For half year, from May to November, Magurele is affected by the transport of aerosols from the nearby city of Bucharest, since the dominant winds are from this direction. Thus, the predominant is the fine mode of aerosols. The high inter-annual and intra-annual variability of Angstrom exponent (440–870 nm) indicates the presence of aerosols of different sizes. Negative statistically significant trends at all AOD wavelengths, the order of 20–40% per decade, have been calculated for the 9-year period of study (2007–2016). These trends are mostly attributed to the reduction of the fine mode particles, showing that the implementation of the EU regulations for the decrease of particulate matter emissions in Bucharest has been beneficial.



The authors would like to thank the two anonymous reviewers for their constructive comments and suggestions that improved the manuscript.

Funding information

The current work has been implemented in the framework of the European Unions H2020—TWINN-2015—Twinning under grant agreement no. 692014, project ECARS (East European Centre for Atmospheric Remote Sensing). Funding was also provided by the Romanian Ministry of Research and Innovation throughout the Core National Program, Proj. No. 33N/16.03.2018.


  1. Benkhalifa J, Leon JF, Chaabane M (2017) Aerosol optical properties of western Mediterranean basin from multi-year AERONET data. J Atmospheric Sol-Terr Phys 164:222–228. CrossRefGoogle Scholar
  2. Bodeker GE, Kremser S (2015) Techniques for analyses of trends in gruan data. Atmos Meas Tech 8(4):1673–1684. CrossRefGoogle Scholar
  3. Bohren C, Huffman D (1983) Absorption and scattering of light by small particles. Research supported by the university of Arizona and Institute of Occupational and Environmental Health. Wiley-Interscience, New York, 541 ppGoogle Scholar
  4. Cazacu M, Timofte A, Unga F, Albina B, Gurlui S (2015) AERONET data investigation of the aerosol mixtures over Iasi area, one-year time scale overview. J Quant Spectrosc Radiat Transf 153:57–64. CrossRefGoogle Scholar
  5. Cazacu MM, Tudose O, Boscornea A, Buzdugan L, Timofte A, Nicolae D (2017) Vertical and temporal variation of aerosol mass concentration at Magurele–Romania during EMEP/PEGASOS campaign. Romanian Rep Phys 69:706Google Scholar
  6. Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res 311(105):20,673–20,696. CrossRefGoogle Scholar
  7. Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P, Eck TF, Volten H, Noz OM, Veihelmann B, van der Zande WJ, Leon J, Sorokin M, Slutsker I (2006) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res 111:D11,208. CrossRefGoogle Scholar
  8. Eck TF, Holben BN, Reid JS, Xian P, Giles DM, Sinyuk A, Smirnov A, Schafer JS, Slutsker I, Kim J, Koo J, Choi M, Kim KC, Sano I, Arola A, Sayer AM, Levy RC, Munchak LA, O’Neill NT, Lyapustin A, Hsu NC, Randles CA, Silva AMD, Buchard V, Govindaraju RC, Hyer E, Crawford JH, Wang P, Xia X (2018) Observations of the interaction and transport of fine mode aerosols with cloud and/or fog in northeast Asia from Aerosol Robotic Network (AERONET) and satellite remote sensing. J Geophys Res 123:5560–5587. Google Scholar
  9. Fountoulakis I, Bais AF, Fragkos K, Meleti C, Tourpali K, Zempila MM (2016) Short- and long-term variability of spectral solar uv irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds. Atmos Chem Phys 16(4):2493–2505. CrossRefGoogle Scholar
  10. Galytska E, Danylevsky V, Hommel R, Burrows JP (2018) Increased aerosol content in the atmosphere over Ukraine during summer 2010. Atmos Meas Tech 330(11):2101–2118. CrossRefGoogle Scholar
  11. Geicu A, Candea Eds I (2008) Clima Romaniei (The climate of Romania). Administratia Nationala de Meteorologie, Editura Academiei Romane, ISBN 978-973-27-1674-8, 365 pp (in Romanian)Google Scholar
  12. Georgoulias AK, Alexandri G, Kourtidis KA, Lelieveld J, Zanis P, Poschl U, Levy R, Amiridis V, Marinou E, Tsikerdekis A (2016) Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the eastern Mediterranean. Atmos Chem Phys 16:13,853–13,884. CrossRefGoogle Scholar
  13. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. 339 John Wiley & Sons, 320 ppGoogle Scholar
  14. Giles DM, Holben BN, Eck TF, Sinyuk A, Smirnov A, Slutsker I, Dickerson RR, Thompson AM, Schafer JS (2012) An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res 343(117):D17,203. Google Scholar
  15. Giles DM, Sinyuk A, Sorokin MS, Schafer JS, Smirnov A, Slutsker I, Eck TF, Holben BN, Lewis J, Campbell J, Welton EJ, Korkin S, Lyapustin A (2018) Advancements in the aerosol robotic network (aeronet) version 3 database—automated near real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos Meas Tech Discuss 2018:1–78. CrossRefGoogle Scholar
  16. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18(1):107–121. CrossRefGoogle Scholar
  17. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET: a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16. CrossRefGoogle Scholar
  18. Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer JS, Chatenet B, Lavenu F, Kaufman YJ, Castle JV, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karneli A, O’Neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res 106(D11):12,067–12,097. CrossRefGoogle Scholar
  19. Holben BN, Eck TF, Slutsker I, Smirnov A, Sinyuk A, Schafer J, Giles D, Dubovik O (2006) Aeronet’s Version 2.0 quality assurance criteria. Proc. SPIE Remote Sens. Atmos. Clouds 6408:64080Q. CrossRefGoogle Scholar
  20. Israelevich P, Ganor E, Alpert P, Kishcha P, Stupp A (2012) Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. J Geophys Res 117:D02,205. Google Scholar
  21. Korkin S, Lyapustin A, Sinyuk A, Holben B (2016) A new code sord for simulation of polarized light scattering in the earth atmosphere. vol 9853, DOI
  22. Maghrabi AH, Alotaibi RN (2017) Long-term variations of AOD from an AERONET station in the central Arabian Peninsula. Theor Appl Climatol 134:1015–1026. CrossRefGoogle Scholar
  23. Marinou E, Amiridis V, Binietoglou I, Tsikerdekis A, Solomos S, Proestakis E, Konsta D, Papagiannopoulos N, Tsekeri A, Vlastou G, Zanis P, Balis D, Wandinger U, Ansmann A (2017) Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmos Chem Phys 17:5893–5919. CrossRefGoogle Scholar
  24. Meier AC, Schonhardt A, Bosch T, Richter A, Seyler A, Ruhtz T, Constantin DE, Shaiganfar R, Wagner T, Merlaud A, Van Roozendael M, Belegante L, Nicolae D, Georgescu L, Burrows JP (2017) High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT. Atmos Meas Tech 10:1831–1857. CrossRefGoogle Scholar
  25. Mihai L, Stefan S (2011) Temporal variation of aerosol optical properties at Magurele. J Atmos Ocean Technol 28:1307–1316. CrossRefGoogle Scholar
  26. Nemuc A, Belegante L, Radulescu R (2011) One year of sunphotometer measurements in Romania. Rom J Phys 56(3–4):550–562. Google Scholar
  27. Nicolae D, Nemuc A, Muller D, Talianu C, Vasilescu J, Belegante L, Kolgotin A (2013) Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry. J Geophys Res Atmos 390 118(7):2956–2965. CrossRefGoogle Scholar
  28. O’Neill NT, Eck TF, Smirnov A, Holben BN, Thulasiraman S (2003) Spectral discrimination of coarse and fine mode optical depth. J Geophys Res 108(4559):393. Google Scholar
  29. Papayannis A, Nicolae D, Kokkalis P, Binietoglou I, Talianu C, Belegante L, Tsaknakis G, Cazacu M, Vetres I, Ilic L (2014) Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. Sci Total Environ 500–501:277–294. CrossRefGoogle Scholar
  30. Pappalardo G, Amodeo A, Apituley A, Comeron A, Freudenthaler V, Linne H, Ansmann A, Bosenberg J, D’Amico G, Mattis I, Mona L, Wandinger U, Amiridis V, Alados-Arboledas L, Nicolae D, Wiegner M (2014) Earlinet: towards an advanced sustainable European aerosol lidar network. Atmos Meas Tech 7(8):2389–2409. CrossRefGoogle Scholar
  31. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124. CrossRefGoogle Scholar
  32. Siomos N, Balis DS, Voudouri KA, Giannakaki E, Filioglou M, Amiridis V, Papayannis A, Fragkos K (2018) Are EARLINET and AERONET climatologies consistent? The case of Thessaloniki, Greece. Atmos Chem Phys 18:11885–11903. CrossRefGoogle Scholar
  33. Sioris CE, Abboud I, Fioletov VE, McLinden CA (2017) AEROCAN, the Canadian sub-network of AERONET: aerosol monitoring and air quality applications. Atmos Environ 167:444–457. CrossRefGoogle Scholar
  34. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, 1535 pp. Google Scholar
  35. Tomasi C, Fuzzi S, Kokhanovsky A (2017) Atmospheric aerosols: life cycles and effects on air quality and climate, vol 1. John Wiley & Sons, Hoboken, ISBN: 978-3-527-33645-6, 704 ppCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Research and Development for OptoelectronicsMagureleRomania
  2. 2.Laboratory of Atmospheric PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations