Cave microclimatology: diurnal variations in aerosol particle concentrations

  • Jiří FaimonEmail author
  • Roman Ličbinský
  • Marek Lang
  • Jarmila Überhuberová
  • Jiří Hebelka
Original Paper


Based on a case study in speleotherapeutic Císařská Cave (Moravian Karst, Czech Republic), the behavior of cave aerosol was studied. The particle size distribution in the aerosol showed an atypical shape with majority of nucleation mode particles. The particle number concentrations oscillated diurnally with the amplitude of 1935 cm−3 (nanoparticles in the range of 6–154 nm) and 436 cm−3 (submicron particles in the range of 154–942 nm). This behavior was simulated under the use of simplified dynamic model. At the model optimization, it was found that the part of aerosol particles (submicron particles especially) was introduced into the cave from exterior by cave ventilation (controlled by external temperature) with participation of external wind and traffic. Other parts of the particles (the nanoparticles especially) probably arose directly in the cave. The presented findings could be important for better understanding of the factors governing cave microclimate.

Graphical abstract



The authors would like to thank Dr. Pavel Pracný for critical reading of the manuscript and the employees of the Children Sanatorium with Speleotherapy (Ostrov u Macochy) for a wide support.

Funding information

This article was produced with the financial support from the Ministry of Education, Youth and Sports within the National Sustainability Programme I, project of Transport R&D Centre (LO1610), on the research infrastructure acquired from the Operation Programme Research and Development for Innovations (CZ.1.05/2.1.00/03.0064).


  1. Absolon K (1970) Moravský kras (in Czech). Academia, PragueGoogle Scholar
  2. Alvarez-Ramirez J, Rodriguez E, Echeverría JC (2005) Detrending fluctuation analysis based on moving average filtering. Physica A 354:199–219CrossRefGoogle Scholar
  3. Balák I, Jančo J, Štefka L, Bosák P (1999) Agriculture and nature conservation in the Moravian Karst (Czech Republic). Int J Speleol 28B:71–88CrossRefGoogle Scholar
  4. Bezek M, Gregorič A, Vaupotič J (2013) Radon decay products and 10–1100 nm aerosol particles in Postojna Cave. Nat Hazards Earth Syst Sci 13:823–831CrossRefGoogle Scholar
  5. Calvo AI, Alves C, Castro AC, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120-121:1–28CrossRefGoogle Scholar
  6. Cave BM, Pearson K (1914) Numerical illustrations of the variate-difference correlation method. Biometrika 10:340–355CrossRefGoogle Scholar
  7. Cigna AA (1967) An analytical study of air circulation in caves. Int J Speleol 3:41–54CrossRefGoogle Scholar
  8. Cigna AA (2004) Climate of caves. In: Gunn J (ed) Encyclopedia of caves and karst science. Taylor & Francis Books, Inc., London, pp 228–230Google Scholar
  9. Csavina J, Field J, Félix O, Corral-Avitia AY, Sáez AE, Bettertond EA (2014) Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci Total Environ 487:82–90CrossRefGoogle Scholar
  10. Cyriac J, Babychan D, Bansy OP, Zamnad KP, Nasar S (2016) Design and fabrication of a halotherapic generating unit for curing pulmonary diseases. IJSER 7(3):191–199Google Scholar
  11. DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Technol 38(12):1185–1205CrossRefGoogle Scholar
  12. de Freitas CR, Littlejohn RN, Clarkson TS, Kristament S (1982) Cave climate: assessment of airflow and ventilation. Int J Climatol 2:383–397CrossRefGoogle Scholar
  13. Dredge J, Fairchild IJ, Harrison RM, Fernandez-Cortes A, Sanchez-Moral S, Jurado V, Gunn J, Smith A, Spötl C, Mattey D, Wynne PM, Grassineau N (2013) Cave aerosols: distribution and contribution to speleothem geochemistry. Quat Sci Rev 63:23–41CrossRefGoogle Scholar
  14. Faimon J, Štelcl J, Sas D (2006) Anthropogenic CO2-flux into cave atmosphere and its environmental impact: a case study in the Císařská Cave (Moravian Karst, Czech Republic). Sci Total Environ 369:231–245CrossRefGoogle Scholar
  15. Faimon J, Troppová D, Baldík V, Novotný R (2012) Air circulation and its impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). Int J Climatol 32:599–623CrossRefGoogle Scholar
  16. Faimon J, Lang M (2013) Variances in airflows during different ventilation modes in a dynamic U-shaped cave. Int J Speleol 42(2):115–122CrossRefGoogle Scholar
  17. Grgić I, Iskra I, Podkrajšek B, Gerjevič VD (2014) Measurements of aerosol particles in the Škocjan Caves, Slovenia. Environ Sci Pollut Res 21:1915–1923CrossRefGoogle Scholar
  18. Harris S, Maricq M (2001) Signature size distributions for diesel and gasoline engine exhaust particulate matter. J Aerosol Sci 32:749–764CrossRefGoogle Scholar
  19. Horváth T (1986) Speleotherapy: a special kind of climatotherapy, its role in respiratory rehabilitation. Int Rehabil Med 8:90–92CrossRefGoogle Scholar
  20. Iskra I, Kávási N, Vaupotič J (2010) Nano aerosols in the Postojnska Cave. Acta Cardiol 39(3):523–528Google Scholar
  21. Jaenicke R (1993) Tropospheric aerosols. In: Hobbs PV (ed) Aerosol-cloud-climate interactions. Academic Press Inc., San Diego, pp 1–31Google Scholar
  22. Järvinen A, Aitomaa M, Rostedt A, Keskinen J, Yli-Ojanperä J (2014) Calibration of the new electrical low pressure impactor (ELPI+). J Aerosol Sci 69:150–159CrossRefGoogle Scholar
  23. Kanniah KD, Kaskaoutis DG, Limd HS, Latif MT, Zaman NAFK, Liewe J (2016) Overview of atmospheric aerosol studies in Malaysia: known and unknown. Atmos Res 182:302–318CrossRefGoogle Scholar
  24. Kendrová L, Takáč P, Kubincová A, Mikuľáková W, Nechvátal P (2016) Effect of spa treatment and speleotherapy in the treatment of chronic obstructive pulmonary disease – a pilot study. CSWHI 7(2):7–15CrossRefGoogle Scholar
  25. Kerminen VM, Lehtinen KEJ, Anttila T, Kulmala M (2004) Dynamics of atmospheric nucleation mode particles: a timescale analysis. Tellus Ser B Chem Phys Meteorol 56(2):135–146CrossRefGoogle Scholar
  26. Kertész Z, Borbély-Kiss I, Hunyadi I (1999) Study of aerosols collected in a speleotherapeutic cave situated below Budapest, Hungary. Nucl Inst Methods Phys Res B 150(1–4):384–391CrossRefGoogle Scholar
  27. Kertész Z, Balásházy I, Borbély-Kiss I, Hofmann W, Hunyadi I, Salma I, Winkler-Heil R (2002) Composition, size distribution and lung deposition distribution of aerosols collected in the atmosphere of a speleotherapeutic cave situated below Budapest, Hungary. Nucl Instrum Meth B 189(1–4):221–226CrossRefGoogle Scholar
  28. Keskinen J, Pietarinen K, Lehtimäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23(4):353–360CrossRefGoogle Scholar
  29. Kulmala M, Kerminen V-M (2008) On the formation and growth of atmospheric nanoparticles. Atmos Res 90:132–150CrossRefGoogle Scholar
  30. Laakso L, Hussein T, Aarnio P, Komppula M, Hiltunen V, Viisanen Y, Kulmala M (2003) Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmos Environ 37:2629–2641CrossRefGoogle Scholar
  31. Lang M, Faimon J (2013) Is the Helmholtz resonator a suitable tool for prediction of the volumes of hidden cave spaces? In: Filippi M, Bosák P (eds) Proceedings of the 16th International Congress of Speleology, vol 2. Czech Speleological Society, Prague, pp 354–357Google Scholar
  32. Lang M, Faimon J, Ek C (2015) The relationship between carbon dioxide concentration and visitor numbers in the homothermic zone of the Balcarka Cave (Moravian Karst) during a period of limited ventilation. Int J Speleol 44(2):167–176CrossRefGoogle Scholar
  33. Lang M, Faimon J, Godissart J, Ek C (2017) Carbon dioxide seasonality in dynamically ventilated caves: the role of advective fluxes. Theor Appl Climatol 129:1355–1372CrossRefGoogle Scholar
  34. Liu X, Penner JE, Herzog M (2005) Global modeling of aerosol dynamics: model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J Geophys Res 110:D18206CrossRefGoogle Scholar
  35. Mäkelä JM, Koponen IK, Aalto P, Kulmala M (2000) One-year data of submicron size modes of tropospheric background aerosol in southern Finland. J Aerosol Sci 31:595–611CrossRefGoogle Scholar
  36. Marjamäki M, Keskinen J, Chen D-R, Pui D (2000) Performance evaluation of the electrical low-pressure impactor (ELPI). J Aerosol Sci 31(2):249–261CrossRefGoogle Scholar
  37. McMurry PH (2000) A review of atmospheric aerosol measurements. Atmos Environ 34:1959–1999CrossRefGoogle Scholar
  38. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz Z, Lettenmaier DP, Stouffer RJ (2008) Climate change – stationarity is dead: whither water management? Science 319(5863):573–574CrossRefGoogle Scholar
  39. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ, Dettinger MD, Krysanova V (2015) On critiques of “Stationarity is dead: whither water management?”. Water Resour Res 51:7785–7789CrossRefGoogle Scholar
  40. Montanari A, Koutsoyiannis D (2014) Modeling and mitigating natural hazards: stationarity is immortal! Water Resour Res 50:9748–9756CrossRefGoogle Scholar
  41. Onac BP, Forti P (2011) Minerogenetic mechanisms occurring in the cave environment: an overview. Int J Speleol 40(2):79–98CrossRefGoogle Scholar
  42. Shi JP, Harrison RM (1999) Investigation of ultrafine particle formation during diesel exhaust dilution. Environ Sci Technol 33(21):3730–3736CrossRefGoogle Scholar
  43. Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2003) Effect of wind speed on columnar aerosol optical properties at Midway Island. J Geophys Res 108(D24):4802CrossRefGoogle Scholar
  44. Smith AC, Wynn PM, Barker PA (2013) Natural and anthropogenic factors which influence aerosol distribution in Ingleborough Show Cave, UK. Int J Speleol 42(1):49–56CrossRefGoogle Scholar
  45. Stanier CO, Khlystov AY, Pandis SN (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos Environ 38:3275–3284CrossRefGoogle Scholar
  46. Stirbu C, Stirbu C, Sandu I (2012) Impact assessment of saline aerosols on exercise capacity of athletes. Procedia Soc Behav Sci 46:4141–4145CrossRefGoogle Scholar
  47. Tanda S, Ličbinský R, Hegrová J, Faimon J, Goessler W (2019) Arsenic speciation in aerosols of a respiratory therapeutic cave: a first approach to study arsenicals in ultrafine particles. Sci Total Environ 651:1839–1848CrossRefGoogle Scholar
  48. von Bismarck-Osten C, Birmili W, Ketzel M, Weber S (2013) Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities. Atmos Environ 77:415–429CrossRefGoogle Scholar
  49. Wehner B, Wiedensohler A, Tuch TM, Wu ZJ, Hu M, Slanina J, Kiang CS (2004) Variability of the aerosol number size distribution in Beijing, China: new particle formation, dust storms, and high continental background. Geophys Res Lett 31:L22108CrossRefGoogle Scholar
  50. Woo KS, Chen DR, Pui DYH, McMurry PH (2001) Measurement of Atlanta aerosol size distributions: observations of ultrafine particle events. Environ Sci Technol 34:75–87Google Scholar
  51. Wu Z, Hu M, Lin P, Liu S, Wehner B, Wiedensohler A (2008) Particle number size distribution in the urban atmosphere of Beijing, China. Atmos Environ 42:7967–7980CrossRefGoogle Scholar
  52. Wu Y, Zhang S, Hao J, Liu H, Wu X, Hu J, Walsh MP, Wallington TJ, Zhang KM, Stevanovic S (2017) On-road vehicle emissions and their control in China: a review and outlook. Sci Total Environ 574:332–349CrossRefGoogle Scholar
  53. Zhang Q, Stanier CO, Canagaratna MR, Jayne JT, Worsnop DR, Pandis SN, Jimenez JL (2004) Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. Environ Sci Technol 38(18):4797–4809CrossRefGoogle Scholar
  54. Zhang X, Yin Y, Lin Z, Han Y, Hao J, Yuan L, Chen K, Chen J, Kong S, Shan Y, Xiao H, Tan W (2017) Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China. Sci Total Environ 575:309–320CrossRefGoogle Scholar
  55. Zhao W, Hopke PK (2006) Source identification for fine aerosols in Mammoth Cave National Park. Atmos Res 80:309–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Geology, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
  3. 3.Division of Transport Infrastructure and EnvironmentTransport Research CentreBrnoCzech Republic
  4. 4.Children Sanatorium with SpeleotherapyOstrov u MacochyCzech Republic
  5. 5.Cave Administration of the Czech RepublicBlanskoCzech Republic

Personalised recommendations