Advertisement

Central European air temperature: driving force analysis and causal influence of NAO

  • Geli Wang
  • Nannan Zhang
  • Kaiyu Fan
  • Milan Palus
Original Paper

Abstract

The identification of causality is the core issue in climate change studies. In this paper, driving force analysis and causal influence of NAO for Central European air temperature is presented using slow feature analysis and convergent cross-mapping. Results showed that the driving force of the dominate 7–8 year scale was reconstructed with central European surface air temperature (SAT), this interannual variability may be driven by large-scale climate variability modes such as North Atlantic Oscillation (NAO) based on the previous studies. Then, the possible dynamical causal relation between NAO and SAT in central European was presented; it was indicative that the air temperature variability in Central European uncovers causal influence by NAO.

Notes

Acknowledgements

The authors are grateful to the editor and the anonymous referee for their useful comments that helped to improve the quality of the manuscript.

Funding information

This research was jointly supported by the National Natural Science Foundation of China (Grant Nos. 91737102 and 41575058) and Chinese Academy of Science and Academy of Sciences of the Czech Republic (Grant No. CAS-17-03).

References

  1. Chang CW, Ushio M, Hsieh CH (2017) Empirical dynamic modeling for beginners. Ecol Res 32:785–796.  https://doi.org/10.1007/s11284-017-1469-9 CrossRefGoogle Scholar
  2. Deyle ER, Sugihara G (2011) Generalized theorems for nonlinear state space reconstruction. PLoS ONE 6(3):e18295.  https://doi.org/10.1371/journal.pone.0018295 CrossRefGoogle Scholar
  3. Feliks Y, Ghil M, Robertson AW (2010) Oscillatory climate modes in the eastern Mediterranean and their synchronization with the North Atlantic oscillation. J Clim 23(15):4060–4079.  https://doi.org/10.1175/2010JCLI3181.1 CrossRefGoogle Scholar
  4. Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438.  https://doi.org/10.2307/1912791 CrossRefGoogle Scholar
  5. Hurrel W (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224):676–679.  https://doi.org/10.1126/science.269.5224.676 CrossRefGoogle Scholar
  6. Jajcay N, Hlinka J, Kravtsov S, Tsonis AA, Palus M (2016) Time scales of the European surface air temperature variability: the role of the 7–8 year cycle. Geophys Res Lett 43(2):902–909.  https://doi.org/10.1002/2015GL067325 CrossRefGoogle Scholar
  7. Konen W, Koch P (2011) The slowness principle: SFA can detect different slow components in non-stationary time series. Int J Innov Comput Appl 3:3–10.  https://doi.org/10.1054/IJICA.2011.037946 CrossRefGoogle Scholar
  8. Li JP, Sun C, Jin FF (2013) NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett 40(20):5497–5502.  https://doi.org/10.1002/2013GL057877 CrossRefGoogle Scholar
  9. Marinazzo D, Pellicoro M, Stramaglia S (2008) Kernel method for nonlinear granger causality. Phys Rev Lett 100:144103.  https://doi.org/10.1103/PhysRevLett.100.144103 CrossRefGoogle Scholar
  10. Mazzarella A, Scafetta N (2012) Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change. Theor Appl Climatol 107(3–4):599–609.  https://doi.org/10.1007/s00704-011-0499-4 CrossRefGoogle Scholar
  11. McGowan JA, Deyle ER, Ye H, Carter NL, Perretti CT, Seger KD, Verneil AD, Sugihara G (2017) Predicting coastal algal blooms in southern California. Ecology 98(5):1419–1433.  https://doi.org/10.1002/ecy.1804 CrossRefGoogle Scholar
  12. Palus M (2014) Multiscale atmospheric dynamics: cross-frequency phase-amplitude coupling in the air temperature. Phys Rev Lett 112(7):078702.  https://doi.org/10.1103/PhysRevLett.112.078702 CrossRefGoogle Scholar
  13. Palus M, Novotna D (1998) Detecting modes with nontrivial dynamics embedded in colored noise: enhanced Monte Carlo SSA and the case of climate oscillations. Phys Lett A 248:191–202.  https://doi.org/10.1016/S0375-9601(98)00675-6 CrossRefGoogle Scholar
  14. Palus M, Novotna D (2009) Phase-coherent oscillatory modes in solar and geomagnetic activity and climate variability. J Atmos Sol Terr Phys 71(8):923–930.  https://doi.org/10.1016/j.jastp.2009.03.012 CrossRefGoogle Scholar
  15. Palus M, Novotna D (2011) Northern Hemisphere patterns of phase coherence between solar/geomagnetic activity and NCEP/NCAR and ERA40 near-surface air temperature in period 7–8 years oscillatory modes. Nonlinear Process Geophys 18(2):251–260.  https://doi.org/10.5194/npg-18-251-2011 CrossRefGoogle Scholar
  16. Palus M, Vejmelka M (2007) Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections. Phys Rev E 75(5):056211.  https://doi.org/10.1103/PhysRevE.75.056211 CrossRefGoogle Scholar
  17. Plaut G, Ghil M, Vautard R (1995) Interannual and interdecadal variability in 335 years of central England temperatures. Science 268:710–713.  https://doi.org/10.1126/science.268.5211.710 CrossRefGoogle Scholar
  18. Pozo-Vázque D, Esteban-Parra MJ, Rodrigo FS, Castro-Díez Y (2001) A study of NAO variability and its possible non-linear influences on European surface temperature. Clim Dyn 17(9):701–715.  https://doi.org/10.1007/s003820000137 CrossRefGoogle Scholar
  19. Scafetta N (2014) Multi-scale dynamical analysis (MSDA) of sea level records versus PDO, AMO, and NAO indexes. Clim Dyn 43(1–2):175–192.  https://doi.org/10.1007/s00382-013-1771-3 CrossRefGoogle Scholar
  20. Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–464.  https://doi.org/10.1103/PhysRevlett85.461 CrossRefGoogle Scholar
  21. Sen AK, Ogrin D (2016) Analysis of monthly, winter, and annual temperatures in Zagreb, Croatia, from 1864 to 2010: the 7.7-year cycle and the North Atlantic Oscillation. Theor Appl Climatol 123(3–4):733–739.  https://doi.org/10.1007/s00704-015-1388-z CrossRefGoogle Scholar
  22. Stark J (1999) Delay embeddings for forced systems: I. Deterministic forcing. J Nonlinear Sci 9:255–332.  https://doi.org/10.1007/s003329900 CrossRefGoogle Scholar
  23. Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 334(6268):734–741.  https://doi.org/10.1038/344734a0 CrossRefGoogle Scholar
  24. Sugihara G, May R, Ye H, Hsieh CH, Deyle E, Fogarty M, Munch S (2012) Detecting causality in complex ecosystems. Science 338:496–500.  https://doi.org/10.1126/science.1227079 CrossRefGoogle Scholar
  25. Sun C, Li J, Jin FF (2015) A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dyn 45:1–17.  https://doi.org/10.1007/s00382-014-2459-z CrossRefGoogle Scholar
  26. Takens F (1981) Detecting strange attractors in turbulence. Dynamical Systems and Turbulence. Springer Berlin Heidelberg, 898, 366–381.  https://doi.org/10.1007/BFb0091924 Google Scholar
  27. Thiéblemont R, Matthes K, Omrani NE, Kodera K, Hansen F (2015) Solar forcing synchronizes decadal North Atlantic climate variability. Nat Commun 6:8268.  https://doi.org/10.1038/ncomms9268 CrossRefGoogle Scholar
  28. Tsonis A et al (2015) Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature. Proc Natl Acad Sci U S A 112:3253–3256.  https://doi.org/10.1073/pnas.1420291112 CrossRefGoogle Scholar
  29. Verdes P, Granitto P, Navone H, Ceccatto H (2001) Nonstationary time-series analysis: accurate reconstruction of driving forces. Phys Rev Lett 87:124101.  https://doi.org/10.1103/PhysRevLett.87.12401 CrossRefGoogle Scholar
  30. Wang G, Yang P, Zhou X (2016) Extracting the driving force from ozone data using slow feature analysis. Theor Appl Climatol 124(3–4):985–989.  https://doi.org/10.1007/s00704-015-1475-1 CrossRefGoogle Scholar
  31. Wang G, Yang P, Zhou X (2017) Identification of the driving forces of climate change using the longest instrumental temperature record. Sci Rep 7:46091.  https://doi.org/10.1038/srep46091 CrossRefGoogle Scholar
  32. Wiskott L (2003) Estimating driving forces of nonstationary time series with slow feature analysis. arXiv.org e-Print archive. https://arxiv.org/abs/cond-mat/0312317

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Complex Systems, Institute of Computer ScienceCzech Academy of SciencesPrague 8Czech Republic

Personalised recommendations