Skip to main content

Advertisement

Log in

Performance of CMIP5 models in the simulation of Indian summer monsoon

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this paper, the fidelity of 28 models under Coupled Model Inter-comparison Project Phase-5 is examined for the Indian summer monsoon for the historical period from 1975 to 2005. It is found that all models simulate the spatial distribution of the seasonal mean surface air temperatures (Tas) quite well (pattern correlation > 0.75), whereas the simulation of precipitation is found to be relatively poor (correlation 0.1–0.7). Most models underestimate the Tas with more bias during winter and less bias during summer. In regard to precipitation, most models fail to capture the observed contribution ratio of convective and large-scale precipitation (LSP) and simulate more convective precipitation as compared to the LSP. Extremely large wet (dry) biases are noted in convective (large-scale) precipitation. The total precipitation is also noted to have a large dry bias in most models, which is mainly due to the large dry bias in the LSP. Contrary to the notion that better simulation of the contribution ratio would lead to better simulation of total precipitation or vice-versa, our results show that both of these notions are not valid for most models. In observations, the LSP dominates the annual cycle of the total precipitation, whereas in models, the convective component dominates. In few models, the annual cycle in the individual precipitation component is either weak or completely missing. None of the models are found to simulate the observed trend in precipitation and temperature. The model with the highest resolution, MIROC-4h, simulates many of the observed features better than the other models, thereby emphasizing the usefulness of finer resolutions in better simulation of Indian monsoon. A comprehensive list of models has been prepared on the basis of their capability in simulating various features of Indian summer monsoon. The multimodel mean of the better models identified in this study is expected to produce more reliable projections of the Indian monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:L05805. https://doi.org/10.1029/2010GL046270

    Article  Google Scholar 

  • Ashfaq M, Shi Y, Tung WW, Trapp RJ, Gao XJ, Pal JS, Diffenbaugh NS (2009) Suppression of South Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. https://doi.org/10.1029/2008GL036500

    Article  Google Scholar 

  • Bi D, Dix M, Marsland SJ, O’Farrell S, Rashid H, Uotila P, Hirst A, Kowalczyk E, Golebiewski M, Sullivan A, Yan H (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63(1):41–64

  • Census of India (2011) http://www.censusindia.gov.in/2011-Documents, Census of Tamil Nadu 2011, ‘Accessed on 17th June 2013 from http://www.census.tn.nic.in/ &http://www.census.tn.nic.in/census2011data/PPT_taluk_data_final.pdf

  • Chapman WL, Walsh JE (2007) A synthesis of Antarctic temperatures. J Clim 20:4096–4117

  • Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103(7):791–802

    Google Scholar 

  • Christensen JH et al (2007) Regional climate projections. In: Solomon et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 847–940

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre Coupled Model without flux adjustments. Clim Dyn 17:61–81

    Article  Google Scholar 

  • Cubasch U et al (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noquer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 527–582

    Google Scholar 

  • Dash SK, Kulkarni MA, Mohanty UC, Prasad K (2009) Changes in the characteristics of rain events in India. J Geophys Res 114:D10109. https://doi.org/10.1029/2008JD010572

    Article  Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC, Ginoux P, Lin SJ, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee HC, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519

    Article  Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165

    Article  Google Scholar 

  • Fan F, Mann ME, Lee S, Evans JL (2012) Future changes in the South Asian summer monsoon: an analysis of the CMIP3 multimodel projections. J Clim 25:3909–3928

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Ghosh S, Luniya V, Gupta A (2009) Trend analysis of Indian summer monsoon rainfall at different spatial scales. Atmos Sci Lett. 10(4):285–90

  • Goswami BN, Chakravorty S (2017) Dynamics of the Indian summer monsoon climate. Oxford Research Encyclopedia of Climate Science, 38. https://doi.org/10.1093/acrefore/9780190228620.013.613

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodan MS, Xavier PK (2006) Increasing trend of extreme events over India in a warming environment. Science 314:1442–1445

    Article  Google Scholar 

  • Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469

    Article  Google Scholar 

  • Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359–373

    Article  Google Scholar 

  • Hazeleger W, Severijns C, Semmler T, Ştefănescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kållberg P, Koenigk T, McGrath R, Miranda P, van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-Earth: a seamless Earthsystem prediction approach in action. Bull Am Meteor Soc 91:1357–1363

    Article  Google Scholar 

  • Hijioka Y, Lin E, Pereira JJ, Corlett RT, Cui X, Insarov GE, Lasco RD, Lindgren E, Surjan A (2014) Asia. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1327–1370

    Google Scholar 

  • Hu Z-Z, Latif M, Roeckner E, Bengtsson L (2000) Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geopys Res Lett 27:2681–2684

    Article  Google Scholar 

  • Huffman GJ et al (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:33–55

    Article  Google Scholar 

  • Jagannathan P, Parthasarathy B (1973) Trends and periodicities of rainfall over India. Mon Weather Rev 101:371–375

    Article  Google Scholar 

  • Jena P, Azad S, Rajeevan MN (2015) CMIP5 projected changes in the annual cycle of Indian monsoon rainfall. Climate 4(1):14

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O'Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Article  Google Scholar 

  • Kim D, Sobel AH, del Genio AD, Chen Y, Camargo SJ, Yao MS, Kelley M, Nazarenko L (2012) The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim 25:4641–4659

    Article  Google Scholar 

  • Kitoh A, Yukimoto S, Noda A, Motoi T (1997) Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2. J Meteor Soc Japan 75:1019–1031

    Article  Google Scholar 

  • Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res 118:3053–3065

    Google Scholar 

  • Kodra E, Ghosh S, Ganguly AR (2012) Evaluation of global climate models for Indian monsoon climatology. Environ Res Lett 7(1):014012. https://doi.org/10.1088/1748-9326/7/1/014012

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A, Sabade SS (2003) Indian monsoon variability in a global warming scenario. Nat Hazards 29:189–206

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159

    Article  Google Scholar 

  • Kucharski F, Abid MA (2017) Interannual Variability of the Indian Monsoon and Its Link to ENSO. Oxford Research Encyclopedia of Climate Science. Ed. http://climatescience.oxfordre.com/view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-615. Accessed 18 Oct 2018

  • Kulkarni MA, Singh A, Mohanty U (2012) Effect of spatial correlation on regional trends in rainevents over India. Theor Appl Climatol 109(3–4):497–505

    Article  Google Scholar 

  • Kumar K et al (1992a) Spatial and subseasonal patterns of the long-term trends of Indian summer monsoon rainfall. Int J Climatol 12.3:257–268

    Article  Google Scholar 

  • Kumar KR, Pant GB, Parthasarathy B, Sontakke NA (1992b) Spatial and subseasonal patterns of the long term trends of Indian summer monsoon rainfall. Int J Climatol 12(3):257–268

    Article  Google Scholar 

  • Lal M, Harasawa H (2001) Future climate change scenarios for Asia as inferred from selected coupled atmosphere-ocean global climate models. J Meteor Soc Japan 79:219–227

    Article  Google Scholar 

  • Li et al (2013) The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2 Adv. Atmos Sci 30:543–560

    Article  Google Scholar 

  • Mao J, Robock A (1998) Surface air temperature simulations by AMIP general circulation models: volcanic and ENSO signals and systematic errors. J Clim 11:1538–1552

  • May W (2002) Simulated changes of the Indian summer monsoon under enhanced greenhouse gas concentrations in a global time-slice experiment. Geophys Res Lett 29:1118. https://doi.org/10.1029/2001GL013808

    Article  Google Scholar 

  • Meehl GA, Washington WM (1993) South Asian summer monsoon variability in a model with doubled atmosphere carbon dioxide concentration. Science 260:1101–1104

    Article  Google Scholar 

  • Menon A, Levermann A, Schewe J, Lehmann J, Frieler K (2013) Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dyn 4(2):287–300. https://doi.org/10.5194/esd-4-287-2013

    Article  Google Scholar 

  • Merryfield WJ, Lee WS, Boer GJ, Kharin VV, Scinocca JF, Flato GM, Polavarapu S (2012) The Canadian seasonal to interannual prediction system. Part I: models and initialization. Mon Weather Rev 141:2910–2945

    Article  Google Scholar 

  • Mooley DA, Parthasarathy B (1984) Fluctuations in all India summer monsoon rainfall during 1871–1978. Climate Change 6:287–301

    Article  Google Scholar 

  • Pai DS et al (2013) Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. MAUSAM 65:1–18

    Google Scholar 

  • Preethi B, Mujumdar M, Kripalani RH, Prabhu A, Krishnan R (2017a) Recent trends and tele-connections among South and East Asian simmer monsoons in a warming environment. Clim Dyn 48:2489–2505

    Article  Google Scholar 

  • Preethi B, Mujumdar M, Prabhu A, Kripalani RH (2017b) Variability and tele-connections of South and East Asian summer monsoons in present and future projections of CMIP5 climate models. Asia-Pac J Atmos Sci 53:305–325

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91(3):296–306

    Google Scholar 

  • Ramesh KV, Goswami P (2014) Assessing reliability of regional climate projections: the case of Indian monsoon. Sci Rep 4:4071. https://doi.org/10.1038/srep04071

    Article  Google Scholar 

  • Rotstayn LD et al (2010) Improved simulation of Australian climate and ENSO-related rainfall variability in a GCM with an interactive aerosol treatment. Int J Climatol 30:1067–1088

    Google Scholar 

  • Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 6:7423

    Article  Google Scholar 

  • Sabade SS, Kulkarni A, Kripalani RH (2011) Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor Appl Climatol 103(3–4):543–565

    Article  Google Scholar 

  • Saha KR, Mooley DA, Saha S (1979) The Indian monsoon and its economic impact. Geo J 3(2):171–178

    Google Scholar 

  • Saha A, Ghosh S, Sahana A, Rao E (2014) Failure of CMIP5 climate models in simulating post 1950 decreasing trend of Indian monsoon. Geophys Res Lett 41:7323–7330

    Article  Google Scholar 

  • Sakamoto TT et al (2012) MIROC4h—a new high resolution atmosphere-ocean coupled general circulation model. J Meteor Soc Japan 90:325–359

    Article  Google Scholar 

  • Shashikanth K, Salvi K, Ghosh S, Rajendran K (2013) Do CMIP5 simulations of Indian summer monsoon rainfall differ from those of CMIP3? Atmos Sci Lett 15(2):79–85, April/June 2014. https://doi.org/10.1002/asl2.466

    Article  Google Scholar 

  • Sheffield J, Barrett AP, Colle B, Nelun Fernando D, Fu R, Geil KL, Hu Q, Kinter J, Kumar S, Langenbrunner B, Lombardo K, Long LN, Maloney E, Mariotti A, Meyerson JE, Mo KC, David Neelin J, Nigam S, Pan Z, Ren T, Ruiz-Barradas A, Serra YL, Seth A, Thibeault JM, Stroeve JC, Yang Z, Yin L (2013) North American climate in CMIP5 experiments. Part I: evaluation of historical simulations of continental and regional climatology*. J Clim 26(23):9209–9245

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang I‐S, Kitoh A, Moise A, Turner AG, Wang B, Zhou T (2012) The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim Dyn. https://doi.org/10.1007/s00382-012-1607-6

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208. https://doi.org/10.1175/JCLI-D-12-00321.1

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Chang 2(8):587–595

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M (2013) The CNRM-CM5.1 global climate model: description and basic evaluation Clim Dyn 40(9-10):2091–121

  • Volodin EM, Diansky NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Oceanic Phys 46:414–431

    Article  Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  • Xin X, Wu T, Zhang J (2013) Introduction of CMIP5 simulations carried out with the climate system models of Beijing Climate Center (in Chinese). Adv Clim Chang Res 4:41–49

    Article  Google Scholar 

  • Yasutomi N, Hamada A, Yatagai A (2011) Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Glob Environ Res V15N2:165–172

    Google Scholar 

  • Yukimoto S et al (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3-Model description and basic performance. J Meteor Soc Japan 90A:23–64

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2013) Multidecadal-to-centennial SST variability in the MPIESM simulation ensemble for the last millennium. Clim Dyn 40:1301–1318

    Article  Google Scholar 

  • Zhang ZS, Nisancioglu K, Bentsen M, Tjiputra J, Bethke I, Yan Q, Risebrobakken B, Andersson C, Jansen E (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci Model Dev 5:523–533

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge National Centre for Atmospheric Research (NCAR) for providing the NCL software used for plotting the data and thank World Climate Research Programme and ESGF for providing CMIP5 historical data. The various modeling groups are sincerely thanked for producing and making available their model output. We thank the IMD for providing data. The TRMM and APHRODITE datasets are obtained from National Aeronautics and Space Administration (NASA) and NCAR. PS is thankful to Ministry of Human Resource and Development and Indian Institute of Technology, Delhi for the Ph.D. fellowship. The authors also thank the anonymous reviewers whose comments and suggestions have improved this paper.

Funding

The work is partially supported by the DST Centre of Excellence in Climate Modeling through project number RP03350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipra Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Salunke, P., Mishra, S.K. et al. Performance of CMIP5 models in the simulation of Indian summer monsoon. Theor Appl Climatol 137, 1429–1447 (2019). https://doi.org/10.1007/s00704-018-2674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2674-3

Navigation