Advertisement

Climate change and summer thermal comfort in China

  • Qinqin Kong
  • Jingyun Zheng
  • Hayley J. Fowler
  • Quansheng Ge
  • Jianchao Xi
Original Paper

Abstract

Heat escape-motivated travel, called “sunbird” tourism, has become increasingly important with global warming and associated urban heat island effects. This study proposes a new method based on defining “comfortable” calendar days, to identify regions thermally suitable for “sunbird” tourism (namely northern Northeast China, eastern Inner Mongolia Plateau, northern Xinjiang Province, eastern Qinghai-Tibet Plateau, and Yungui Plateau) and their comfortable periods in China. From 1961–1990 to 1987–2016, comfortable periods have extended by 5 to over 20 days in eastern Qinghai-Tibet Plateau and parts of Yungui Plateau, but shortened by 5 to over 20 days in northern Northeast China and eastern Inner Mongolia Plateau, corresponding to 9 and 21 locations respectively becoming suitable and no longer suitable for “sunbird” tourism. Moreover, comfortable periods are now much earlier in the eastern Inner Mongolia Plateau and have dramatically altered in terms of their temporal distribution over the eastern Qinghai-Tibet Plateau. Finally, we discuss the implications for tourism.

Notes

Funding information

Qinqin Kong is funded by the China Scholarship Council (No. 201604910868); Jingyun Zheng is funded by the National Natural Science Foundation of China (Grant No. 41671036); Hayley J. Fowler is funded by the European Research Council Grant, INTENSE (ERC-2013-CoG-617329).

References

  1. Amelung B, Moreno A (2012) Costing the impact of climate change on tourism in Europe: results of the PESETA project. Clim Chang 112:83–100.  https://doi.org/10.1007/s10584-011-0341-0 CrossRefGoogle Scholar
  2. Amelung B, Viner D (2006) Mediterranean tourism: exploring the future with the tourism climatic index. J Sustain Tour 14:349–366.  https://doi.org/10.2167/jost549.0 CrossRefGoogle Scholar
  3. Amelung B, Nicholls S, Viner D (2007) Implications of global climate change for tourism flows and seasonality. J Travel Res 45:285–296.  https://doi.org/10.1177/0047287506295937 CrossRefGoogle Scholar
  4. Amengual A, Homar V, Romero R, Ramisa C, Alonsoa S (2014) Projections for the 21st century of the climate potential for beach-based tourism in the Mediterranean. Int J Climatol 34(13): 3481–3498.  https://doi.org/10.1002/joc.3922 CrossRefGoogle Scholar
  5. Andrades L, Dimanche F (2017) Destination competitiveness and tourism development in Russia: issues and challenges. Tour Manag 62:360–376.  https://doi.org/10.1016/j.tourman.2017.05.008 CrossRefGoogle Scholar
  6. Batista RJR, Gonçalves FLT, da Rocha RP (2016) Present climate and future projections of the thermal comfort index for the metropolitan region of São Paulo, Brazil. Clim Chang 137:439–454.  https://doi.org/10.1007/s10584-016-1690-5 CrossRefGoogle Scholar
  7. Błazejczyk K (2004) Radiation balance in man in various meteorological and geographical conditions. Geogr Pol 77:63–76Google Scholar
  8. Błażejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56:515–535.  https://doi.org/10.1007/s00484-011-0453-2 CrossRefGoogle Scholar
  9. Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the universal thermal climate index (UTCI). Int J Biometeorol 56:481–494.  https://doi.org/10.1007/s00484-011-0454-1 CrossRefGoogle Scholar
  10. Chen H, Yan Y, Yue S, Meng B, Wang X (2015) Types of summer comfortable climate in China and their temporal and spatial distribution. Prog Geogr 34:175–184Google Scholar
  11. Cheung CSC, Hart MA (2014) Climate change and thermal comfort in Hong Kong. Int J Biometeorol 58:137–148.  https://doi.org/10.1007/s00484-012-0608-9 CrossRefGoogle Scholar
  12. de Freitas CR (1990) Recreation climate assessment. Int J Climatol 10:89–103.  https://doi.org/10.1002/joc.3370100110 CrossRefGoogle Scholar
  13. de Freitas CR (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol 48:45–54.  https://doi.org/10.1007/s00484-003-0177-z CrossRefGoogle Scholar
  14. de Freitas CR, Scott D, McBoyle G (2008) A second generation climate index for tourism (CIT): specification and verification. Int J Biometeorol. 52(5): 399–407.  https://doi.org/10.1007/s00484-007-0134-3 CrossRefGoogle Scholar
  15. Douglas VH (1977) Percent of possible sunshine and the total cloud cover. Mon Weather Rev 105:648–652.  https://doi.org/10.1175/1520-0493(1977)105<0648:popsat>2.0.co;2 CrossRefGoogle Scholar
  16. Essa KS, Etman SM (2004) On the relation between cloud cover amount and sunshine duration. Meteorog Atmos Phys 87:235–240.  https://doi.org/10.1007/s00703-003-0046-7 CrossRefGoogle Scholar
  17. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159.  https://doi.org/10.1007/s004840100099 CrossRefGoogle Scholar
  18. Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56:429–441.  https://doi.org/10.1007/s00484-011-0424-7 CrossRefGoogle Scholar
  19. Ge Q, Kong Q, Xi J, Zheng J (2017) Application of UTCI in China from tourism perspective. Theor Appl Climatol 128:551–561.  https://doi.org/10.1007/s00704-016-1731-z CrossRefGoogle Scholar
  20. Giannakopoulos C, Kostopoulou E, Varotsos KV, Tziotziou K, Plitharas A (2011) An integrated assessment of climate change impacts for Greece in the near future. Reg Environ Chang 11:829–843.  https://doi.org/10.1007/s10113-011-0219-8 CrossRefGoogle Scholar
  21. Gómez Martín MB (2005) Weather, climate and tourism a geographical perspective. Ann Tour Res 32:571–591.  https://doi.org/10.1016/j.annals.2004.08.004 CrossRefGoogle Scholar
  22. Grillakis MG, Koutroulis AG, Tsanis IK (2016) The 2 °C global warming effect on summer European tourism through different indices. Int J Biometeorol 60:1205–1215.  https://doi.org/10.1007/s00484-015-1115-6 CrossRefGoogle Scholar
  23. Hamilton JM, Maddison DJ, Tol RSJ (2005) Climate change and international tourism: a simulation study. Glob Environ Chang 15:253–266.  https://doi.org/10.1016/j.gloenvcha.2004.12.009 CrossRefGoogle Scholar
  24. Hanson CE, Palutikof JP, Dlugolecki A, Giannakopoulos C (2006) Bridging the gap between science and the stakeholder: the case of climate change research. Clim Res 31:121–133.  https://doi.org/10.3354/cr031121 CrossRefGoogle Scholar
  25. Havenith G, Fiala D, Błazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56:461–470.  https://doi.org/10.1007/s00484-011-0451-4 CrossRefGoogle Scholar
  26. Hein L, Metzger MJ, Moreno A (2009) Potential impacts of climate change on tourism; a case study for Spain. Curr Opin Environ Sustainability 1(2):170–178.  https://doi.org/10.1016/j.cosust.2009.10.011 CrossRefGoogle Scholar
  27. Iqbal M (1983) An introduction to solar radiation. Academic Press, New YorkGoogle Scholar
  28. Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428.  https://doi.org/10.1007/s00484-011-0513-7 CrossRefGoogle Scholar
  29. Jiang Z, Song J, Li L, Chen W, Wang Z, Wang J (2012) Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim Chang 110:385–401.  https://doi.org/10.1007/s10584-011-0090-0 CrossRefGoogle Scholar
  30. Lemesios G, Giannakopoulos C, Papadaskalopoulou C, Karali A, Varotsos KV, Moustakas K, Malamis D, Zachariou-Dodou M, Petrakis M, Loizidou M (2016) Future heat-related climate change impacts on tourism industry in Cyprus. Reg Environ Chang 16:1915–1927.  https://doi.org/10.1007/s10113-016-0997-0 CrossRefGoogle Scholar
  31. Leng G, Tang Q, Huang S, Zhang X (2016) Extreme hot summers in China in the CMIP5 climate models. Clim Chang 135:669–681.  https://doi.org/10.1007/s10584-015-1576-y CrossRefGoogle Scholar
  32. Li R, Chi X (2014) Thermal comfort and tourism climate changes in the Qinghai–Tibet Plateau in the last 50 years. Theor Appl Climatol 117:613–624.  https://doi.org/10.1007/s00704-013-1027-5 CrossRefGoogle Scholar
  33. Li H, Feng L, Zhou T (2011) Multi-model projection of July–August climate extreme changes over China under CO2 doubling. Part II: Temperature. Adv Atmos Sci 28:448–463.  https://doi.org/10.1007/s00376-010-0052-x CrossRefGoogle Scholar
  34. Lin T-P, Matzarakis A (2011) Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tour Manag 32:492–500.  https://doi.org/10.1016/j.tourman.2010.03.017 CrossRefGoogle Scholar
  35. Lise W, Tol RSJ (2002) Impact of climate on tourist demand. Clim Chang 55:429–449.  https://doi.org/10.1023/a:1020728021446 CrossRefGoogle Scholar
  36. Mieczkowski Z (1985) The tourism climatic index: a method of evaluating world climates for tourism. Can Geogr 29:220–233.  https://doi.org/10.1111/j.1541-0064.1985.tb00365.x CrossRefGoogle Scholar
  37. Moreno A (2010) Mediterranean Tourism and Climate (Change): A Survey-Based Study. Tour Hosp Plan & Dev 7:253–265.  https://doi.org/10.1080/1479053X.2010.502384 CrossRefGoogle Scholar
  38. Nicholls S, Amelung B (2008) Climate change and tourism in Northwestern Europe: impacts and adaptation. Tour Anal 13:21–31.  https://doi.org/10.3727/108354208784548724 CrossRefGoogle Scholar
  39. Nicholson RE, Pearce DG (2001) Why do people attend events: a comparative analysis of visitor motivations at four South Island events. J Travel Res 39:449–460.  https://doi.org/10.1177/004728750103900412 CrossRefGoogle Scholar
  40. Rensheng C, Shihua L, Ersi K, Jianping Y, Xibin J (2006) Estimating daily global radiation using two types of revised models in China. Energ Conver Manage 47:865–878.  https://doi.org/10.1016/j.enconman.2005.06.015 CrossRefGoogle Scholar
  41. Rutty M, Scott D (2010) Will the Mediterranean become “too hot” for tourism? A reassessment. Tour Hosp Plann Dev 7:267–281.  https://doi.org/10.1080/1479053X.2010.502386 CrossRefGoogle Scholar
  42. Ryan C, Sun M, Zhang X, Li F, Li P, Gao J, Jin Y, Lin H (2017) Illustrations of Chinese tourism research.Tourism Manage 58:229–234.  https://doi.org/10.1016/j.tourman.2016.03.006 CrossRefGoogle Scholar
  43. Scott D, McBoyle G, Schwartzentruber M (2004) Climate change and the distribution of climatic resources for tourism in North America. Clim Res 27:105–117.  https://doi.org/10.3354/cr027105 CrossRefGoogle Scholar
  44. Tang C, Zhong L, Kristen M, Cheng S (2012) A comprehensive evaluation of tourism climate suitability in Qinghai Province, China. J MT SCI-ENGL 9:403–413.  https://doi.org/10.1007/s11629-009-2161-5 CrossRefGoogle Scholar
  45. Wang L, Chen W (2014) A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int J Climatol 34:2059–2078.  https://doi.org/10.1002/joc.3822 CrossRefGoogle Scholar
  46. Wang S, Li W (2007) Climate of China. China Meteorological Press, BeijingGoogle Scholar
  47. Yang J, Zhang Y, Xi J (2016) The comprehensive evaluation of suitability of summer tourism base in China. Res Sci 38:2210–2220Google Scholar
  48. Zhang Y, Xu Y, Dong W, Cao L, Sparrow M (2006) A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys Res Lett 33:L24702.  https://doi.org/10.1029/2006GL027229

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations