Advertisement

The influence of large-scale factors on the heat load on human beings in Poland in the summer months

  • Małgorzata Owczarek
Original Paper

Abstract

The aim of the research was to identify connections between the occurrence of heat load across Poland and large-scale factors, which will allow statistical models to be derived that are useful to describe bioclimatic conditions in Poland in the summer. Atmospheric circulation over the North Atlantic Ocean and Europe and near-surface air temperature over the central part of Europe were considered. The monthly frequency of the occurrence of combined “moderate, strong, very strong and extreme heat stress” based on the assessment scale of the Universal Thermal Climate Index (UTCI) in the summer months accounted for 6% to more than 30% of all cases. The statistical downscaling procedure of canonical correlation analysis (CCA) with respect to the period 1971–2000 was applied to extract the main modes of large-scale factors and their local responses. The greatest explained variance of local field response to atmospheric circulation as well as to near-surface air temperature is above 70%. Warm air flow from the east and from the southeast has the strongest influence on the increase in frequency of the occurrence of heat stress on human beings in Poland. The spatial differentiation of the air temperature anomaly over central Europe is an important determinant of the occurrence of heat stress in Poland. The validation of constructed models encompassed the periods 1951–1970 and 2001–2010. The best reliability of results was reached for the reconstructed series in July. The results are less useful in June and August and in the coastal region.

References

  1. Aboukhalid K, Al Faiz C, Douaik A, Bakha M, Kursa K, Agacka-Mołdoch M, Machon N, Tomi F, Lamiri A (2017) Influence of environmental factors on essential oil variability in Origanum compactum Benth. Growing wild in Morocco. Chem Biodivers 14.  https://doi.org/10.1002/cbdv.201700158 CrossRefGoogle Scholar
  2. Barnett TP, Preisendorfer R (1987) Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon Weather Rev 115:1825–1850CrossRefGoogle Scholar
  3. Bartoszek K, Krzyżewska A (2017) The atmospheric circulation conditions of the occurrence of heatwaves in Lublin, southeast Poland. Weather 72(6):176–180.  https://doi.org/10.1002/wea.2975 CrossRefGoogle Scholar
  4. Bartoszek K, Wereski S, Krzyżewska A, Dobek M (2017) The influence of atmospheric circulation on bioclimatic conditions in Lublin (Poland). Bulletin of Geography. Physical Geography Series 12:41–49.  https://doi.org/10.1515/bgeo-2017-0004 CrossRefGoogle Scholar
  5. Bartzokas A, Lolis CJ, Kassomenos PA, Mc Gregor GR (2013) Climatic characteristics of summer human thermal discomfort in Athens and its connection to atmospheric circulation. Nat Hazards Earth Syst Sci 13:3271–3279.  https://doi.org/10.5194/nhess-13-3271-2013 CrossRefGoogle Scholar
  6. Bednorz E, Czernecki B, Tomczyk AM, Półrolniczak M (2018) If not NAO then what?—regional circulation patterns governing summer air temperatures in Poland. Theor Appl Climatol.  https://doi.org/10.1007/s00704-018-2562
  7. Błażejczyk K, Błażejczyk M (2006) BioKlima ver.2.6. Polish Academy of Sciences. www.igipz.pan.pl/bioklima.html (assessed 1 Aug 2017)
  8. Błażejczyk K, Kunert A (2011) Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce (Bioclimatic principles of recreation and tourism in Poland, in Polish). Monografie IGiPZ PAN 13, WarsawGoogle Scholar
  9. Błażejczyk K, Bröde P, Fiala D, Havenith G, Holmér I, Jendritzky G, Kampmann B, Kunert A (2010) Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica 14:91–102Google Scholar
  10. Błażejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–535CrossRefGoogle Scholar
  11. Błażejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013) An introduction to the Universal Thermal Climate Index (UTCI). Geogr Pol 86(1):5–10CrossRefGoogle Scholar
  12. Błażejczyk K, Baranowski J, Jendritzky G, Błażejczyk A, Bröde P, Fiala D (2015) Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification. Geogr Pol 88(3):439–453CrossRefGoogle Scholar
  13. Błażejczyk K, Kuchcik M, Dudek W, Kręcisz B, Błażejczyk A, Milewski P, Szmyd J, Pałczyński C (2016) Urban heat island and bioclimatic comfort in Warsaw. [in]: Musco F. (eds.) Counteracting urban heat island effects in a global climate change scenario. Springer International Publishing: 377–395Google Scholar
  14. Błażejczyk A, Błażejczyk K, Baranowski J, Kuchcik M (2018) Heat stress mortality and desired adaptation responses of healthcare system in Poland. Int J Biometeorology 62(3):307–318.  https://doi.org/10.1007/s00484-017-1423-0 CrossRefGoogle Scholar
  15. Bleta A, Nastos PT, Matzarakis A (2014) Assessment of bioclimatic conditions on Crete Island, Greece. Reg Environ Chang 14(5):1967–1981CrossRefGoogle Scholar
  16. Bröde P, Fiala D, Blazejczyk K, Holmer I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56(3):481–449CrossRefGoogle Scholar
  17. Bröde P, Krüger EL, Fiala D (2013) UTCI: validation and practical application to the assessment of urban outdoor thermal comfort. Geogr Pol 86(1):11–20CrossRefGoogle Scholar
  18. Busuioc A, Chen D, Hellström C (2001) Performance of statistical downscaling models in GCM validation and regional climate change estimates: application for Swedish precipitation. Int J Climatol 21:557–578CrossRefGoogle Scholar
  19. Chen D (2000) A monthly circulation climatology for Sweden and its application to a winter temperature case study. Int J Climatol 20:1067–1076CrossRefGoogle Scholar
  20. Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112:D15103.  https://doi.org/10.1029/2007jd008510 CrossRefGoogle Scholar
  21. European Environment Agency (2012) Changes of the climate system. [in:] Climate change, impacts and vulnerability in Europe 2012, an Indicator-Based Report. EEA Report No. 12/2012, European Environment Agency (EEA), CopenhagenGoogle Scholar
  22. Farajzadeh H, Saligheh M, Alijani B, Matzarakis A (2015) Comparison of selected thermal indices in the northwest of Iran. Natural Environ Change 1:61–80Google Scholar
  23. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45(3):143–159CrossRefGoogle Scholar
  24. Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441CrossRefGoogle Scholar
  25. Fröhlich D, Matzarakis A (2015) A quantitative sensitivity analysis on the behavior of common thermal indices under hot and windy conditions in Doha, Qatar. Theor Appl Climatol 124:179–187.  https://doi.org/10.1007/s00704-015-1410-5 CrossRefGoogle Scholar
  26. Ge Q, Kong Q, Xi J, Zheng J (2016) Application of UTCI in China from tourism perspective. Theor Appl Climatol 128:551–561.  https://doi.org/10.1007/s00704-016-1731-z CrossRefGoogle Scholar
  27. Heyen H, Fock H, Greve W (1998) Detecting relationships between the interannual variability in ecological time series and climate using a multivariate statistical approach—case study for Helgoland Roads zooplankton. Clim Res 10:179–191CrossRefGoogle Scholar
  28. Jendritzky G, de Dear R, Havenith G (2012) UTC—why another thermal index? Int J Biometeorol 56(3):421–428CrossRefGoogle Scholar
  29. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  30. Kampmann B, Bröde P, Fiala D (2012) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int J Biometeorol 56(3):505–513CrossRefGoogle Scholar
  31. Krueger O, Hegerl GC, Tett SFB (2015) Evaluation of mechanisms of hot and cold days in climate models over Central Europe. Environ Res Lett 10:014002.  https://doi.org/10.1088/1748-9326/10/1/014002 CrossRefGoogle Scholar
  32. Kusch W, Hwang YF, Jendritzky G, Jacobsen I (2004) Guidelines on biometeorology and air quality forecasts. WMO/TD No. 1184. World Meteorological Organization, GenevaGoogle Scholar
  33. Kyselý J (2007) Implications of enhanced persistence of atmospheric circulation for the occurrence and severity of temperature extremes. Int J Climatol 27(5):689–695CrossRefGoogle Scholar
  34. Lhotka O, Kyselý J (2015) Hot central-European summer of 2013 in a long-term context. Int J Climatol 35:4399–4407.  https://doi.org/10.1002/joc.4277 CrossRefGoogle Scholar
  35. Maak K, von Storch H (1997) Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany. Int J Biometeorol 41:5–12CrossRefGoogle Scholar
  36. Marosz M, Wójcik R, Pilarski M, Miętus M (2013) Extreme daily precipitation totals in Poland during summer: the role of regional atmospheric circulation. Clim Res 56:245–259.  https://doi.org/10.3354/cr01155 CrossRefGoogle Scholar
  37. Matulla C, Scheifinger H, Menzel A, Koch E (2003) Exploring two methods for statistical downscaling of Central European phenological time series. Int J Biometeorol 48(2):56–64CrossRefGoogle Scholar
  38. Matzarakis A, Muthers S, Rutz F (2014) Application and comparison of UTCI and PET in temperate climate conditions. Finisterra 49(98):21–31Google Scholar
  39. McGregor GR, Markou MT, Bartzokas A, Katsoulis BD (2002) An evaluation of the nature and timing of summer human thermal discomfort in Athens, Greece. Clim Res 20:83–94.  https://doi.org/10.3354/cr020083 CrossRefGoogle Scholar
  40. McGregor GR, Bessemoulin P, Ebi K, Menne B (eds) (2015) Heatwaves and health: guidance on warning-system development, WMO No. 1142. World Meteorological Organization and World Health Organization, GenevaGoogle Scholar
  41. Miętus M (1999) Rola regionalnej cyrkulacji atmosferycznej w kształtowaniu warunków klimatycznych i oceanograficznych w polskiej strefie brzegowej Morza Bałtyckiego (The role of the regional atmospheric circulation in shaping of climatic and oceanographical conditions in Polish coastal zone, in Polish). Materiały Badawcze IMGW, Seria: Meteorologia 29, WarsawGoogle Scholar
  42. Miętus M, Filipiak J (2004) The temporal and spatial patterns of thermal conditions in the area of the southwestern coast of the gulf of Gdańsk (Poland) from 1951 to 1998. Int J Climatol 24:499–509CrossRefGoogle Scholar
  43. Morabito M, Crisci A, Messeri A, Capecchi V, Modesti PA, Gensini GF, Orlandini S (2014) Environmental temperature and thermal indices: what is the most effective predictor of heat-related mortality in different geographical contexts? Sci World J 2014:1–15.  https://doi.org/10.1155/2014/961750 CrossRefGoogle Scholar
  44. Nastos PT, Matzarakis A (2012) The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor Appl Climatol 108(3–4):591–599CrossRefGoogle Scholar
  45. Ndetto EL, Matzarakis A (2015) Urban atmospheric environment and human biometeorological studies in Dar es Salaam, Tanzania. Air Qual Atmos Health 8:175–191CrossRefGoogle Scholar
  46. Nemeth A (2011) Changing thermal bioclimate in some Hungarian cities. Acta Climatologica et Chorologica Universitatis Szegediensis 44-45:93–101Google Scholar
  47. Nowosad M, Rodzik B, Wereski S, Dobek M (2013) The UTCI Index in Lesko and Lublin and its circulation determinations. Geogr Pol 86(1):29–36CrossRefGoogle Scholar
  48. Owczarek M, Filipiak J (2016) Contemporary changes of thermal conditions in Poland, 1951-2015. Bulletin Geography. Phys Geography Series 10:31–50.  https://doi.org/10.1515/bgeo-2016-0003 CrossRefGoogle Scholar
  49. Park S, Tuller SE, Jo M (2014) Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc Urban Plan 125:146–155CrossRefGoogle Scholar
  50. Pfahl S (2014) Characterising the relationship between weather extremes in Europe and synoptic circulation features. Nat Hazards Earth Syst Sci 14:1461–1475.  https://doi.org/10.5194/nhess-14-1461-2014 CrossRefGoogle Scholar
  51. Plavcová E, Kyselý J (2013) Projected evolution of circulation types and their temperatures over Central Europe in climate models. Theor Appl Climatol 114(3–4):625–634CrossRefGoogle Scholar
  52. Plavcová E, Kyselý J (2016) Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Clim Dyn 46(9–10):2805–2820CrossRefGoogle Scholar
  53. Półrolniczak M, Szyga-Pluta K, Kolendowicz L (2016) Bioklimat wybranych miast pasa Pobrzeży Południowobałtyckich na podstawie uniwersalnego wskaźnika obciążenia cieplnego (Bioclimate of the chosen cities in the Polish Baltic Coast based on Universal Thermal Climate Index, in Polish). Acta Geographica Lodziensia 104:147–161Google Scholar
  54. Porębska M, Zdunek M (2013) Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001–2011. Meteorolologische Zeitschrift 22(5):533–540CrossRefGoogle Scholar
  55. Psikuta A, Fiala D, Laschewski G, Jendritzky G, Richards M, Błażejczyk K, Mekjavič I, Rintamäki H, de Dear R, Havenith G (2012) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56(3):443–460CrossRefGoogle Scholar
  56. Rozbicka K, Rozbicki T (2017) Variability of UTCI index in South Warsaw depending on atmospheric circulation. Theoretical Appl Climatology 133:511–520.  https://doi.org/10.1007/s00704-017-2201-y CrossRefGoogle Scholar
  57. Rutgersson A, Jaagus J, Schenk F, Stendel M, Bärring L, Briede A, Claremar B, Hanssen-Bauer I, Holopainen J, Moberg A, Nordli Ø, Egidijus Rimkus E, Wibig J (2015) Recent climate change (past 200 years) [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Springer International Publishing AG: Cham, Heidelberg, New York, Dordrecht, London  https://doi.org/10.1007/978-3-319-16006-1 Google Scholar
  58. Santos JA, Malheiro AC, Pinto JG, Jones GV (2012) Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Clim Res 51:89–103CrossRefGoogle Scholar
  59. Tomczyk AM, Bednorz E (2016) Heat waves in Central Europe and their circulation conditions. Int J Climatol 36:770–782CrossRefGoogle Scholar
  60. Urban A, Kyselý J (2014) Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int J Environ Res Public Health 11:952–967.  https://doi.org/10.3390/ijerph110100952 CrossRefGoogle Scholar
  61. Ustrnul Z, Czekierda D, Wypych A (2010) Extreme values of air temperature in Poland according to different atmospheric circulation classifications. Phys Chem Earth 35:429–436CrossRefGoogle Scholar
  62. Valeriánová A, Crhová L, Holtanová E, Kašpar M, Müller M, Pecho J (2017) High temperature extremes in the Czech Republic 1961–2010 and their synoptic variants. Theor Appl Climatol 127(1–2):17–29.  https://doi.org/10.1007/s00704-015-1614-8 CrossRefGoogle Scholar
  63. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. von Storch H, Omstedt A, Pawlak J, Reckermann M (2015) Introduction and summary [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Springer International Publishing AG: Cham, Heidelberg, New York, Dordrecht, London.  https://doi.org/10.1007/978-3-319-16006-1 Google Scholar
  65. Walikewitz N, Jänicke B, Langner M, Endlicher W (2015) Assessment of indoor heat stress variability in summer and during heat warnings: a case study using the UTCI in Berlin, Germany. Int J Biometeorol 62:29–42.  https://doi.org/10.1007/s00484-015-1066-y CrossRefGoogle Scholar
  66. Werner PC, von Storch H (1993) Interannual variability of Central European mean temperature in January–February and its relation to large-scale circulation. Clim Res 3:195–207CrossRefGoogle Scholar
  67. Wibig J (2012) Has the frequency or intensity of hot weather events changed in Poland since 1950? Advances Sci Res 8:87–91.  https://doi.org/10.5194/asr-8-87-2012 CrossRefGoogle Scholar
  68. Wibig J, Podstawczyńska A, Rzepa M, Piotrowski P (2009) Heat waves in Poland—frequency, trends and relationships with atmospheric circulation. Geogr Pol 82:33–45CrossRefGoogle Scholar
  69. Wilks DS (2005) Statistical methods in the atmospheric sciences. International geophysics series. Elsevier, BurlingtonGoogle Scholar
  70. Wójcik R, Miętus M (2012) Rola cyrkulacji atmosferycznej w kształtowaniu długookresowych zmian temperatury powietrza w Polsce (The role of atmospheric circulation in forming long-term changes of air temperature in Poland, in Polish) [in:] Bielec-Bąkowska Z, Łupikasza E, Widawski A (eds.) The role of atmospheric circulation in shaping of the climate, Sosnowiec: 385–397Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Meteorology and Climatology, Faculty of Oceanography and GeographyUniversity of GdanskGdanskPoland

Personalised recommendations