Theoretical and Applied Climatology

, Volume 136, Issue 3–4, pp 1175–1184 | Cite as

Monotone trends in the distribution of climate extremes

  • Martin RothEmail author
  • Geurt Jongbloed
  • Adri Buishand
Original Paper


The generalized Pareto distribution (GPD) is often used in the statistical analysis of climate extremes. For a sample of independent and identically distributed observations, the parameters of the GPD can be estimated by the maximum likelihood (ML) method. In this paper, we drop the assumption of identically distributed random variables. We consider independent observations from GPD distributions having a common shape parameter but possibly an increasing trend in the scale parameter. Such a model, with increasing scale parameter, can be used to describe a trend in the observed extremes as time progresses. Estimating an increasing trend in a distribution parameter is common in the field of isotonic regression. We use ideas and tools from that area to compute ML estimates of the GPD parameters. In a simulation experiment, we show that the iterative convex minorant (ICM) algorithm is much faster than the projected gradient (PG) algorithm. We apply the approach to the daily maxima of the central England temperature (CET) data. A clear positive trend in the GPD scale parameter is found, leading to an increase in the 100-year return level from about 31º in the 1880s to 34º in 2015.


Nonparametric estimation Isotonic regression Peaks-over-threshold GPD Central England temperature 


  1. Acero FJ, García J A, Gallego MC (2011) Peaks-over-threshold study of trends in extreme rainfall over the Iberian Peninsula. J Clim 24:1089–1105. CrossRefGoogle Scholar
  2. Beguería S, Angulo-Martínez M, Vicente-Serrano SM, López-Moreno J I, El-Kenawy A (2010) Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: a case study in northeast Spain from 1930 to 2006. Int J Climatol 31 (14):2102–2114. CrossRefGoogle Scholar
  3. Bertsekas D (1976) On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans Autom Control 21(2):174–184. CrossRefGoogle Scholar
  4. Blobel V, Lohrmann E (1998) Statistische Und numerische Methoden der Datenanalyse. Teubner, Stuttgart. e-Version from 2012CrossRefGoogle Scholar
  5. Carreau J, Naveau P, Neppel L (2017) Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation. Water Resour Res 53:4407–4426. CrossRefGoogle Scholar
  6. Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. Appl Stat 54 (1):207–222. Google Scholar
  7. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836. CrossRefGoogle Scholar
  8. Coelho CAS, Ferro CAT, Stephenson DB, Steinskog DJ (2008) Methods for exploring spatial and temporal variability of extreme events in climate data. J Clim 21(10):2072–2092. CrossRefGoogle Scholar
  9. Coles SG (2001) An introduction to statistical modeling of extreme values. Springer, LondonCrossRefGoogle Scholar
  10. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Davison AC, Ramesh NI (2000) Local likelihood smoothing of sample extremes. J Royal Stat Soc B 62 (1):191–208. CrossRefGoogle Scholar
  12. Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events. Springer, BerlinCrossRefGoogle Scholar
  13. Gafni EM, Bertsekas DP (1982) Convergence of a gradient projection method. LIDS-p 1201 Massachusetts Institute of Technology, CambridgeGoogle Scholar
  14. Goldstein AA (1964) Convex programming in Hilbert space. Bull Am Math Soc 70:709–710. CrossRefGoogle Scholar
  15. Hall P, Tajvidi N (2000) Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Stat Sci 15(2):153–167. CrossRefGoogle Scholar
  16. Hosking JRM, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3):339–349. CrossRefGoogle Scholar
  17. Jongbloed G (1998) The iterative convex minorant algorithm for nonparametric estimation. J Comput Graph Stat 7(3):310–321. Google Scholar
  18. Kyselý J, Picek J, Beranová R (2010) Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold. Glob Planet Chang 72 (1-2):55–68. CrossRefGoogle Scholar
  19. Langousis A, Mamalakis A, Puliga M, Deidda R (2016) Threshold detection for the generalized Pareto distribution: Review of representative methods and application to the NOAA NCDC daily rainfall database. Water Resour Res 52:2659–2681. CrossRefGoogle Scholar
  20. Levitin ES, Polyak BT (1966) Constrained minimization methods. USSR Comput Math Math Phys 6 (5):1–50CrossRefGoogle Scholar
  21. Lucio PS, Silva AM, Serrano AI (2010) Changes in occurrences of temperature extremes in continental Portugal: a stochastic approach. Meteorol Appl 17:404–418. Google Scholar
  22. Murphy SA, Van der Vaart AW (2000) On profile likelihood. J Amer Stat Assoc 95(450):449–465CrossRefGoogle Scholar
  23. Naveau P, Guillou A, Rietsch T (2014) A non-parametric entropy-based approach to detect changes in climate extremes. J Royal Stat Soc B 76(5):861–884. CrossRefGoogle Scholar
  24. Obeysekera J, Salas JD (2013) Quantifying the uncertainty of design floods under nonstationary conditions. J Hydrol Eng 19(7):1438–1446. CrossRefGoogle Scholar
  25. Padoan SA, Wand MP (2008) Mixed model-based additive models for sample extremes. Stat Probab Lett 78(17):2850–2858. CrossRefGoogle Scholar
  26. Parker DE, Legg TP, Folland CK (1992) A new daily central England temperature series 1772–1991. Int J Climatol 12:317–342CrossRefGoogle Scholar
  27. Parker DE, Horton B (2005) Uncertainties in central England temperature 1878–2003 and some improvements to the maximum and minimum series. Int J Climatol 25:1173–1188. CrossRefGoogle Scholar
  28. Reiss RD, Thomas M (2007) Statistical analysis of extreme values: with applications to insurance, finance hydrology and other fields, 3rd edn. Basel, BirkhäuserGoogle Scholar
  29. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Stat 54:507–554. Google Scholar
  30. Robertson T, Wright FT, Dykstra RL (1988) Order restricted statistical inference. Chichester, WileyGoogle Scholar
  31. Roth M, Buishand TA, Jongbloed G, Klein Tank AMG, van Zanten JH (2012) A regional peaks-over-threshold model in a nonstationary climate. Water Resour Res 48(11):W11,533. CrossRefGoogle Scholar
  32. Roth M, Buishand TA, Jongbloed G (2015) Trends in moderate rainfall extremes: a regional montone regression approach. J Clim 28(22):8760–8769. CrossRefGoogle Scholar
  33. Schendel T, Thongwichian R (2015) Flood frequency analysis: confidence interval estimation by test inversion bootstrapping. Adv Water Resour 83:1–9CrossRefGoogle Scholar
  34. Tramblay Y, Neppel L, Carreau J, Najib K (2013) Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrol Sci J 58(2):280–294. CrossRefGoogle Scholar
  35. Van de Vyver H (2012) Evolution of extreme temperatures in Belgium since the 1950s. Theor Appl Climatol 107(1):113–129. CrossRefGoogle Scholar
  36. Woodroofe M, Sun J (1993) A penalized maximum likelihood estimate of f(0+) when f is non-increasing. Stat Sin 3(2):501– 515Google Scholar
  37. Zhang J, Stephens MA (2009) A new and efficient estimation method for the generalized Pareto distribution. Technometrics 51(3):316–325. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RWDW, Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  2. 2.Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations