Advertisement

Theoretical and Applied Climatology

, Volume 136, Issue 1–2, pp 627–638 | Cite as

A climatological study of air pollution potential in China

  • Mingyuan Yu
  • Xuhui CaiEmail author
  • Chunmeng Xu
  • Yu Song
Original Paper

Abstract

Air pollution potential (APP) is a measure of the meteorological conditions conducive to high air pollution levels, independent of source emissions. We propose the integrated concentration footprint (ICF) as a new indicator to quantify APP and present the climatology of the APP distribution in China. The HYSPLIT model was employed to calculate back trajectories and to derive ICF at grid points over China, for the period 2000–2012. The annual mean APP exhibited a distribution in reasonable agreement with topography and climate features. Seasonal characteristics of APP are also presented. Comparison of the seasonal variation in APP with that of air pollution data at selected cities produced diverse results. APP agreed well with air pollution variations in Urumqi, a city in northwestern China. However, in eastern China, APP peaked in summer, which is in contrast to observations, where the lowest air pollution levels occurred in this season. Two possible factors were considered to resolve this discrepancy, namely, the scarcity of pollutant sources over the sea surface and the wet removal of particulate matter. Adjusted APP exhibited an inland shift of its maximum in southeastern China and reduced values in summer, which were in more reasonable agreement with air pollution data. The correlations between adjusted APP values and air pollution levels were significantly improved in the southern coastal cities of Guangzhou and Shanghai, but could not adequately capture the observations for other inland cities. Although preliminary, the ICF provides a comprehensive measure of the meteorological background of China’s air pollution.

Notes

Funding information

This work was partially supported by the Clean Air Research Project in China (201509001, 201409001), National S&T Support Program (2014BAC06B02), and National Natural Science Foundation of China (41421064, 41575007).

Supplementary material

704_2018_2511_MOESM1_ESM.pdf (272 kb)
ESM 1 (PDF 271 kb)

References

  1. Bowers JF, Bjorklund JR, Cheney CS, Schewe GJ (1980) Industrial Source Complex (ISC) dispersion model user’s guide. US Environmental Protection Agency, Office of Air Quality Planning and StandardsGoogle Scholar
  2. Byun D, Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev 59:51–77.  https://doi.org/10.1115/1.2128636 CrossRefGoogle Scholar
  3. Cai XH (2008) Footprint analysis in micrometeorology and its extended applications. Chin J Atmos Sci 32:123–132Google Scholar
  4. Cai W, Li K, Liao H, Wang H, Wu L (2017) Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat Clim Chang 7:257–262.  https://doi.org/10.1038/NCLIMATE3249 CrossRefGoogle Scholar
  5. Cai XH, Leclerc MY (2007) Forward-in-time and backward-in-time dispersion in the convective boundary layer: the concentration footprint. Bound-Layer Meteorol 123(2):201–218.  https://doi.org/10.1007/s10546-006-9141-x CrossRefGoogle Scholar
  6. Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmos Environ 42(1):1–42.  https://doi.org/10.1016/j.atmosenv.2007.09.003 CrossRefGoogle Scholar
  7. Chen XM, Zou Q, Zhou GB (2013) On impact of precipitation intensity of air pollutants in winter and spring in Chongqing downtown. J Southwest China Normal Univs 38:113–121Google Scholar
  8. Draxler RR and Hess GD (1997) Description of the HYSPLIT_4 modeling system. Natl Ocean Atmos Administration Tech Memo Erl Arl 197–199Google Scholar
  9. Editorial committee of Climatological Atlas of the People’s Republic of China (2002), Climatological Atlas of the People’s Republic of China (in Chinese), China Meteorological Press, BeijingGoogle Scholar
  10. Feng X, Li Q, Zhu Y, Hou J, Jin L, Wang J (2015) Artificial neural networks forecasting of PM 2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos Environ 107:118–128.  https://doi.org/10.1016/j.atmosenv.2015.02.030 CrossRefGoogle Scholar
  11. Finnigan J (2004) The footprint concept in complex terrain. Agric For Meteorol 127(3–4):117–129.  https://doi.org/10.1016/j.agrformet.2004.07.008 CrossRefGoogle Scholar
  12. Gassmann MI, Mazzeo NA (2000) Air pollution potential: regional study in Argentina. Environ Manag 25(4):375–382.  https://doi.org/10.1007/s002679910029 CrossRefGoogle Scholar
  13. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39(37):6957–6975.  https://doi.org/10.1016/j.atmosenv.2005.04.027 CrossRefGoogle Scholar
  14. Gross E (1970) The national air pollution potential forecast program. National Meteorological Center Washington DCGoogle Scholar
  15. Hogrefe C, Hao W, Civerolo K, Ku JY, Sistla G, Gaza RS, Sedefian L, Schere K, Gilliland A, Mathur R (2007) Daily simulation of ozone and fine particulates over New York State: findings and challenges. J Appl Meteorol Clim 46(7):961–979CrossRefGoogle Scholar
  16. Holzworth GC (1962) A study of air pollution potential for the western United States. J Appl Meteorol 1(3):366–382CrossRefGoogle Scholar
  17. Holzworth GC (1964) Estimates of mean maximum mixing depths in the contiguous United States. Mon Weather Rev 92(5):235–242CrossRefGoogle Scholar
  18. Holzworth GC (1967) Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J Appl Meteorol 6(6):1039–1044.  https://doi.org/10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2 CrossRefGoogle Scholar
  19. Hosler CR (1961) Low-level inversion frequency in the contiguous United States. Month Weather Rev 89(9):319–339CrossRefGoogle Scholar
  20. Huang Q, Cai X, Song Y, Zhu T (2017) Air stagnation in China (1985–2014): climatological mean features and trends. Atmos Chem Phys 17(12):7793–7805.  https://doi.org/10.5194/acp-17-7793-2017 CrossRefGoogle Scholar
  21. Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43(1):51–63.  https://doi.org/10.1016/j.atmosenv.2008.09.051 CrossRefGoogle Scholar
  22. Ji D, Li L, Wang Y, Zhang J, Cheng M, Sun Y, Liu Z, Wang L, Tang G, Hu B, Chao N, Wen T, Miao H (2014) The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: insights gained from observation. Atmos Environ 92:546–556.  https://doi.org/10.1016/j.atmosenv.2014.04.048 CrossRefGoogle Scholar
  23. Jorba O, Pérez C, Rocadenbosch F, Baldasano J (2004) Cluster analysis of 4-day back trajectories arriving in the Barcelona area, Spain, from 1997 to 2002. J Appl Meteorol 43:887–901.  https://doi.org/10.1175/1520-0450(2004)043%3C0887:CAODBT%3E2.0.CO;2 CrossRefGoogle Scholar
  24. Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Bound-Layer Meteorol 99(2):207–224.  https://doi.org/10.1023/A:1018991015119 CrossRefGoogle Scholar
  25. Lamb RG (1983) A regional scale (1000km) model of photochemical air pollution part 1. Theoretical formulation. US Environmental Protection Agency, EPA/600/3-33-035Google Scholar
  26. Li X, Ding X, Gao H, Zhu Z (2011) Characteristics of air pollution index in typical cities of North China. J Arid Land Resour Environ 25:96–101Google Scholar
  27. Meloni D, Di Sarra A, Biavati G, DeLuisi JJ, Monteleone F, Pace G, Piacentinod S, Sferlazzo DM (2007) Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos Environ 41(14):3041–3056.  https://doi.org/10.1016/j.atmosenv.2006.12.001 CrossRefGoogle Scholar
  28. Miller ME, Niemeyer LE (1963) Air pollution potential forecasts—a year’s experience. J Air Pollut Control Assoc 13:205–210CrossRefGoogle Scholar
  29. Niemeyer LE (1960) Forecasting air pollution potential. Mon Weather Rev 88(3):88–96CrossRefGoogle Scholar
  30. Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7(16):6843–6902.  https://doi.org/10.5194/acp-7-4419-2007 CrossRefGoogle Scholar
  31. Pack DH (1964) Meteorology of air pollution. Science 146(3648):1119–1128CrossRefGoogle Scholar
  32. Pan YX, Jiang WM (1982) Atmospheric maximum mixing depth of the mainland of China. China Environ Sci 5:51–56Google Scholar
  33. Pasquill F, Smith FB (1983) Atmospheric diffusion, 3rd edn. Wiley, New YorkGoogle Scholar
  34. Perez P, Reyes J (2006) An integrated neural network model for PM10 forecasting. Atmos Environ 40(16):2845–2851.  https://doi.org/10.1016/j.atmosenv.2006.01.010 CrossRefGoogle Scholar
  35. Qu WJ, Arimoto R, Zhang XY, Zhao CH, Wang YQ, Sheng LF, Fu G (2010) Spatial distribution and interannual variation of surface PM10 concentrations over eighty-six Chinese cities. Atmos Chem Phys 10(12):5641–5662.  https://doi.org/10.5194/acp-10-5641-2010 CrossRefGoogle Scholar
  36. Rannik Ü, Aubinet M, Kurbanmuradov O, Sabelfeld KK, Markkanen T, Vesala T (2000) Footprint analysis for measurements over a heterogeneous forest. Bound-Layer Meteorol 97(1):137–166.  https://doi.org/10.1023/A:1002702810929 CrossRefGoogle Scholar
  37. Rutllant J, Garreaud R (1995) Meteorological air pollution potential for Santiago, Chile: towards an objective episode forecasting. Environ Monit Assess 34(3):223–244CrossRefGoogle Scholar
  38. Schmid HP (1994) Source areas for scalars and scalar fluxes. Bound-Layer Meteorol 67(3):293–318.  https://doi.org/10.1007/BF00713146 CrossRefGoogle Scholar
  39. Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113(1–4):159–183.  https://doi.org/10.1016/S0168-1923(02)00107-7 CrossRefGoogle Scholar
  40. Scott GM, Diab RD (2000) Forecasting air pollution potential: a synoptic climatological approach. J Air Waste Manage Assoc 50(10):1831–1842.  https://doi.org/10.1080/10473289.2000.10464216
  41. Shad R, Mesgari MS, Shad A (2009) Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput Environ Urban Syst 33(6):472–481.  https://doi.org/10.1016/j.compenvurbsys.2009.10.004 CrossRefGoogle Scholar
  42. Sogachev A, Leclerc MY (2011) On concentration footprints for a tall tower in the presence of a nocturnal low-level jet. Agric For Meteorol 151(6):755–764.  https://doi.org/10.1016/j.agrformet.2010.10.004 CrossRefGoogle Scholar
  43. Stadlober E, Hörmann S, Pfeiler B (2008) Quality and performance of a PM10 daily forecasting model. Atmos Environ 42(6):1098–1109.  https://doi.org/10.1016/j.atmosenv.2007.10.073 CrossRefGoogle Scholar
  44. Streets DG, Fu JS, Jang CJ, Hao J, He K, Tang X, Zhang Y, Wang Z, Li Z, Zhang Q, Wang L, Wang B, Yu C, Wang L (2007) Air quality during the 2008 Beijing Olympic Games. Atmos Environ 41(26):480–492.  https://doi.org/10.1016/j.atmosenv.2006.08.046 CrossRefGoogle Scholar
  45. Van der Wal JT, Janssen L (2000) Analysis of spatial and temporal variations of PM 10 concentrations in the Netherlands using Kalman filtering. Atmos Environ 34(22):3675–3687.  https://doi.org/10.1016/S1352-2310(00)00085-6 CrossRefGoogle Scholar
  46. Vesala T, Kljun N, Rannik Ü, Rinne J, Sogachev A, Markkanen T, Sabelfeld K, Foken T, Leclerc MY (2008) Flux and concentration footprint modelling: state of the art. Environ Pollut 152(3):653–666.  https://doi.org/10.1016/j.envpol.2007.06.070 CrossRefGoogle Scholar
  47. Viswanadham DV, Santosh KR (1989) Air pollution potential over south India. Bound-Layer Meteorol 48(3):299–313CrossRefGoogle Scholar
  48. Wang JXL, Angell JK (1999) Air stagnation climatology for the United States. NOAA/Air Resour Lab ATLAS 1Google Scholar
  49. Xu DH, Zhu R (2000) Atmospheric advective and dispersion nonstatic box-model for prediction of the potential index of airborne pollutant. Q J Appl Meteorol 11:1–12Google Scholar
  50. Zhang JK, Sun Y, Liu ZR, Ji DS, Hu B, Liu Q, Wang YS (2014) Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos Chem Phys 14(6):2887–2903.  https://doi.org/10.5194/acp-14-2887-2014 CrossRefGoogle Scholar
  51. Zhang X, Wang C, Wang B (2011) Influence of meteorological condition on air quality over Shijiazhuang of Hebei Province. J Arid Meteorol 29:42–47Google Scholar
  52. Zhang Y, Bocquet M, Mallet V, Seigneur C, Baklanov A (2012) Real-time air quality forecasting, part I: history, techniques, and current status. Atmos Environ 60:632–655.  https://doi.org/10.1016/j.atmosenv.2012.06.031 CrossRefGoogle Scholar
  53. Zhou XX, Ding YH, Wang PX (2008) Moisture transport in Asian summer monsoon region and its relationship with summer precipitation in China. Acta Meteor Sin 66:59–70Google Scholar
  54. Zhu R, Xu D, Zhou C, Zhang Y, Zhou C, Kuang S (2002) Applications of CAPPS in the numerical prediction operational system of multi-city air pollution index. Journal of Applied Meteorological Science 2002:204–213Google Scholar
  55. Zolghadri A, Cazaurang F (2006) Adaptive nonlinear state-space modelling for the prediction of daily mean PM 10 concentrations. Environ Model Softw 21(6):885–894.  https://doi.org/10.1016/j.envsoft.2005.04.008 CrossRefGoogle Scholar
  56. Zou Y, Wang Y, Zhang Y, Koo JH (2017) Arctic sea ice, Eurasia snow, and extreme winter haze in China. Sci Adv 3(3):e1602751.  https://doi.org/10.1126/sciadv.1602751 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Environmental Sciences and Engineering, State Key Laboratory of Environmental Simulation and Pollution ControlPeking UniversityBeijingChina
  2. 2.Beijing Jiagetiandi Tech. Co. Ltd.BeijingChina

Personalised recommendations