Advertisement

Theoretical and Applied Climatology

, Volume 136, Issue 1–2, pp 363–375 | Cite as

Variation in MERRA-2 aerosol optical depth over the Yangtze River Delta from 1980 to 2016

  • Enwei Sun
  • Huizheng CheEmail author
  • Xiaofeng Xu
  • Zhenzhu Wang
  • Chunsong Lu
  • Ke Gui
  • Hujia Zhao
  • Yu Zheng
  • Yaqiang Wang
  • Hong Wang
  • Tianze Sun
  • Yuanxin Liang
  • Xiaopan Li
  • Zhizhong Sheng
  • Linchang An
  • Xiaoye Zhang
  • Guangyu Shi
Original Paper

Abstract

In this study, 765 instantaneous MERRA-2 (second Modern-Era Retrospective analysis for Research and Applications) aerosol optical depth (AOD) values at 550 nm were compared with those of a sky radiometer in Hefei (31.90° N, 117.17° E) for the different seasons from March 2007 to February 2010. The correlation coefficients (R) were 0.88, 0.83, 0.88, and 0.80 in spring, summer, autumn, and winter, respectively. The MERRA-2 AOD is also compared with MODIS Aqua AOD in the entire Yangtze River Delta, and good agreement has been obtained. The MERRA-2 AOD product was used to analyze the spatial distribution and temporal variation of the annual, seasonal and monthly means of the AOD over the Yangtze River Delta region from 1980 to 2016 (37 years). The mean values of the MERRA-2 AOD during the study period show that the AOD (between 0.45 and 0.55) in the northern area of the Yangtze River Delta was higher than that (between 0.30 and 0.45) of the southern area. The northwest part of the Yangtze River Delta had the highest mean AOD values (between 0.50 and 0.55). The AOD increased slowly in the 1980s and 1990s, followed by a rapid increase between 2001 and 2010. An AOD decrease can be seen from 2011 to 2016. The mean AOD in each month is discussed. High AOD was observed in March, April, and June, while low AOD could be seen in September, October, November, and December. Three different area types (large cities, medium-sized cities, and remote areas) had nearly the same annual AOD variation. Large cities had the highest AOD (about 0.48), while remote areas had the lowest (about 0.42). In summer, the AOD in remote areas was much lower than that in cities. The AOD variational trend over the Yangtze River Delta was studied during two periods. The increasing trend could be seen over the entire Yangtze River Delta in each month from 1980 to 2009. A decreasing trend was found all over the Yangtze River Delta in January, February, March, July, October, and November, whereas in other months, some parts witnessed increasing AOD while others saw a decreasing trend between 2010 and 2016.

Keywords

MERRA-2 AOD Yangtze River Delta Sky radiometer 

Notes

Funding

This work was supported by grants from the National Key R & D Program Pilot Projects of China (2016YFA0601901), the National Key Research and Development Program of China (2016YFA0602003), the National Key Project of Basic Research (2014CB441201), the National Natural Science Foundation of China (41590874 and 41375153), the CAMS Basis Research Project (2017Z011, 2016Z01, and 2014R17), and the Climate Change Special Fund of CMA (CCSF201504).

References

  1. Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360(9341):1233–1242CrossRefGoogle Scholar
  2. Cao C, Zheng S, Singh RP (2014) Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005–2010) over Beijing, China. Atmos Res 150(1):129–142CrossRefGoogle Scholar
  3. Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255(5043):423–430CrossRefGoogle Scholar
  4. Che HZ, Shi GY, Zhang XY, Arimoto R, Zhao JQ, Xu L, Wang B, Chen ZH (2005) Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys Res Lett 32(L06803):2341–2352Google Scholar
  5. Che HZ, Zhang X, Li Y, Zhou Z, Qu JJ (2007a) Horizontal visibility trends in China 1981–2005. Geophys Res Lett 34(24):497–507CrossRefGoogle Scholar
  6. Che HZ, Shi GY, Zhang XY, Zhao JQ, Li Y (2007b) Analysis of sky conditions using 40 year records of solar radiation data in China. Theor Appl Climatol 89(1–2):83–94CrossRefGoogle Scholar
  7. Che HZ, Zhang X, Chen H, Damiri B, Goloub P, Li Z, Zhang X, Wei Y, Zhou H, Dong F, Li D, Zhou T (2009a) Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J Geophys Res 114(D03206)Google Scholar
  8. Che HZ, Zhang XY, Yang L et al (2009b) Haze trends over the capital cities of 31 provinces in China, 1981–2005. Theor Appl Climatol 97(3–4):235–242CrossRefGoogle Scholar
  9. Che HZ, Wang YQ, Sun JY (2011) Aerosol optical properties at Mt. Waliguan Observatory, China. Atmos Environ 45(2011):6004–6009CrossRefGoogle Scholar
  10. Che HZ, Zhang X, Xia X, Goloub P, Holben B, Zhao H, Wang Y, Zhang X, Wang H, Blarel L, Damiri B, Zhang R, Deng X, Ma Y, Wang T, Geng F, Qi B, Zhu J, Yu J, Chen Q, Shi G (2015) Ground-based aerosol climatology of China: aerosol optical depths from the China aerosol remote sensing network (CARSNET) 2002-2013. Atmos Chem Phys 15:7619–7652CrossRefGoogle Scholar
  11. Che HZ, Gui K, Chen Q, Zheng Y, Yu J, Sun T, Zhang X, Shi G (2016) Calibration of the 936 nm water-vapor channel for the China aerosol remote sensing NETwork (CARSNET) and the effect of the retrieval water-vapor on aerosol optical property over Beijing, China. Atmos pollut Res 7(5):743–753CrossRefGoogle Scholar
  12. Chen J, Xin J, An J, Wang Y, Liu Z, Chao N, Meng Z (2014) Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region. Atmos Res 143(24):216–227CrossRefGoogle Scholar
  13. Cheng TT, Zhang RJ, Han, ZW, Fang W (2008) Relationship between ground-based particle component and column aerosol optical property in dusty days over Beijing. Geophys Res Lett 35(L20808):288–299Google Scholar
  14. Deng X, Shi C, Wu B, Chen Z, Nie S, He D, Zhang H (2012) Analysis of aerosol characteristics and their relationships with meteorological parameters over Anhui province in China. Atmos Res 109(110):52–63CrossRefGoogle Scholar
  15. Dubovik O, Smirnov A, Holben B, King M, Kaufman Y, Eck T, Slutsker I (2000) Accuracy assessments of aerosol optical properties retrieved from aerosol robotic network (AERONET) sun and sky radiance measurements. J Geophys Res 105(D8):9791–9806CrossRefGoogle Scholar
  16. Eck TF, Holben BN, Dubovik O, Smirnov A, Goloub P, Chen HB, Chatenet B, Gomes L, Zhang XY, Tsay SC, Ji Q, Giles D, Slutsker I (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J Geophys Res 110(D06202):887–908Google Scholar
  17. Gelaro R, Mccarty W, Suarez MJ, Todling R, Molod A, Takacs L et al (2017) The Modern-Era Retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30:5419–5454CrossRefGoogle Scholar
  18. Gui K, Che H, Chen Q, Yu J, Zheng Y, Lu S, Wang H, Wang Y, Zhang X, Shi G (2016) Analysis of the error in retrievals of aerosol optical properties from sunphotometer measurements of CARSNET due to a variety of objective factors. Atmosphere 7(1):9CrossRefGoogle Scholar
  19. Gui K, Che H, Chen Q, Zeng Z, Zheng Y, Long Q, Sun T, Liu X, Wang Y, Liao T, Yu J, Wang H, Zhang X (2017) Water vapor variation and the effect of aerosols in China. Atmos Environ 165:322–335CrossRefGoogle Scholar
  20. Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. P Natlacad Sci USA 97(18):9875–9880CrossRefGoogle Scholar
  21. He Q, Zhang M, Huang B (2016) Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015. Atmos Environ 129:79–90CrossRefGoogle Scholar
  22. He LJ, Wang LC, Lin AW, Zhang M, Bilal M, Tao MH (2017) Aerosol optical properties and associated direct radiative forcing over the Yangtze River basin during 2001–2015. Remote Sens 9:746CrossRefGoogle Scholar
  23. Hirono M, Shibata T (1983) Enormous increase of stratospheric aerosols over Fukuoka due to volcanic eruption of El Chichon in 1982. Geophys Res Lett 10(2):152–154CrossRefGoogle Scholar
  24. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16CrossRefGoogle Scholar
  25. Huang L, Chen M, Hu J (2016) Twelve-year trends of PM10 and visibility in the Hefei metropolitan area of China. Adv Meteorol 2016(4810796):1–9Google Scholar
  26. Jiang JH, Su H, Zhai C, Wu L, Minschwaner K, Molod A, Tompkins A (2015) An assessment of upper troposphere and lower stratosphere water vapor in MERRA,MERRA2, and ECMWF reanalyses using Aura MLS observations. J Geophys Res-Atmos 120(22):11468–11485CrossRefGoogle Scholar
  27. Jing J, Wu Y, Tao J, Che H, Xia X, Zhang X, Yan P, Zhao D, Zhang L (2015) Observation and analysis of near-surface atmospheric aerosol optical properties in urban Beijing. Particuology 18(1):144–154CrossRefGoogle Scholar
  28. Kang N, Kumar K, Yu X, Yin Y (2016a) Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China. Environ Sci Pollut Res 2016(23):17532–17552CrossRefGoogle Scholar
  29. Kang N, Kumar K, Hu K, Yu X, Yin Y (2016b) Long-term (2002–2014) evolution and trend in collection 5.1 level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta. Atmos Res 181:29–43CrossRefGoogle Scholar
  30. Khatri P, Takamura T (2009) An algorithm to screen cloud-affected data for sky radiometer data analysis. J Meteorol Soc Jpn 87(87):189–204CrossRefGoogle Scholar
  31. Kumar KR, Sivakumar V, Yin Y, Reddy RR, Kang N, Diao Y, Adesina AJ, Yu X (2014) Long-term (2003–2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa. Atmos Environ 95:400–408CrossRefGoogle Scholar
  32. Li YJ, Xue Y, Leeuw G, Li C, Yang LK, Hou TT, Marir F (2013) Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data. Remote Sens Environ 133:1–20CrossRefGoogle Scholar
  33. Li Z, Xia X, Cribb M, Mi W, Holben B, Wang P, Chen H, Tsay S, Eck TF, Zhao F, Dutton EG, Dickerson RE (2007) Aerosol optical properties and their radiative effects in northern China. J Geophys Res 112(D22S01):321–341Google Scholar
  34. Liu X, Chen Q, Che H, Zhang R, Gui K, Zhang H, Zhao T (2016) Spatial distribution and temporal variation of aerosol optical depth in the Sichuan basin, China, the recent ten years. Atmos Environ 147:434–445CrossRefGoogle Scholar
  35. Luo Y, Zheng X, Zhao T, Chen J (2014) A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Int J Climatol 34(3):863–870CrossRefGoogle Scholar
  36. Molod A, Takacs L, Suarez M, Bacmeister J (2015) Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci Model Dev 8(5):1339–1356CrossRefGoogle Scholar
  37. Pan L, Che H, Geng F, Xia X, Wang Y, Zhu C, Chen M, Gao W, Guo J (2010) Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta region. Atmos Environ 44:2587–2596CrossRefGoogle Scholar
  38. Panicker AS, Lee DI, Kumkar YV, Kim D, Maki M, Uyeda H (2012) Decadal climatological trends of aerosol optical parameters over three different environments in South Korea. Int J Climatol 33:1909–1916CrossRefGoogle Scholar
  39. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124CrossRefGoogle Scholar
  40. Remer LA, Kaufman YJ, Tanre D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products and validation. J Atmos Sci 62(4):947–973CrossRefGoogle Scholar
  41. Shao P, Xin J, An J, Kong L, Wang B, Wang J, Wang Y, Wu D (2016) The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta. Atmos Pollut Res 8 (2017):233–243CrossRefGoogle Scholar
  42. Smirnov A, Holben B, Eck T, Dubovik O, Slutsker I (2000) Cloud-screening and quality control algorithms for the AERONET database. Remote Sens of Environ 73(3):337–349CrossRefGoogle Scholar
  43. Taylor K, Penner JE (1994) Response of the climate system to atmospheric aerosolsand greenhouse gases. Nature 369(6483):734–737CrossRefGoogle Scholar
  44. Tie X, Wu D, Brasseur G (2009) Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos Environ 43:2375–2377CrossRefGoogle Scholar
  45. Wang J, Christopher S (2003) Intercomparison between satellite derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophys Res Lett 30(21):2095CrossRefGoogle Scholar
  46. Wang LC, Gong W, Xia XA, Zhu J, Li J, Zhu ZM (2015a) Long-term observations of aerosol optical properties at Wuhan, an urban site in Central China. Atmos Environ 101:94–102CrossRefGoogle Scholar
  47. Wang LC, Gong W, Singh RP, Xia XA, Che HZ, Zhang M, Lin H (2015b) Aerosol optical properties over mount song, a rural site in Central China. Aerosol Air Qual Res 15:2051–2064CrossRefGoogle Scholar
  48. Wang LC, Chen YS, Niu Y, Salazar GA, Gong W (2017) Analysis of atmospheric turbidity in clear skies at Wuhan, Central China. J Earth Sci 28(4):729–738CrossRefGoogle Scholar
  49. Wang Z, Liu D, Wang Z, Wang Y, Khatri P, Zhou J, Takamura T, Shi G (2014) Seasonal characteristics of aerosol optical properties at the SKYNET Hefei site (31.90° N, 117.17° E) from 2007 to 2013. J Geophys Res-Atmos 119:6128–6139CrossRefGoogle Scholar
  50. Wu Y, Zhang R, Pu Y, Zhang L, Ho KF, Fu CB (2012) Aerosol optical properties observed at a semi-arid rural site in Northeastern China. Aerosol Air Qual Res 12:503–514CrossRefGoogle Scholar
  51. Xie Y, Zhang Y, Xiong X, Qu J, Che H (2011) Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos Environ 45(2011):5970–5978CrossRefGoogle Scholar
  52. Xin J, Wang L, Wang Y, Li Z, Wang P (2011) Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010. Atmos Environ 45:6317–6325CrossRefGoogle Scholar
  53. Xin J, Wang Y, Li Z, Wang P, Hao W, Nordgren BL, Wang S, Liu G, Wang L,Wen T, Sun Y, Hu B (2007) Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res 112 (D05203):1703–1711Google Scholar
  54. Xin J, Gong C, Liu Z, Cong Z, Gao W, Song T, Pan Y, Sun Y, Ji D, Wang L, Tang G, Wang Y (2016) The observation-based relationships between PM2.5 and AOD over China. J Geophys Res-Atmos 121:10701–10716CrossRefGoogle Scholar
  55. Xu X, Qiu J, Xia X, Sun L, Min M (2015) Characteristics of atmospheric aerosol optical depth variation in China during 1993–2012. Atmos Environ 119:82–94CrossRefGoogle Scholar
  56. Zhai P, Eskridge R (1997) Atmospheric water vapor over China. J Clim 10:2643–2652CrossRefGoogle Scholar
  57. Zhang M, Wang LC, Gong W, Ma YY, Liu BM (2017a) Aerosol optical properties and direct radiative effects over Central China. Remote Sens 9:997CrossRefGoogle Scholar
  58. Zhang M, Ma YY, Wang LC, Gong W, Hu B, Shi YF (2017b) Spatial-temporal characteristics of aerosol loading over the Yangtze River Basin during 2001–2015. Int J Climatol DOI 38:2138–2152.  https://doi.org/10.1002/joc.5324 CrossRefGoogle Scholar
  59. Zhao B, Liou KN, Gu Y et al (2017) Enhanced PM2.5 pollution in China due to aerosol-cloud interactions. Sci Rep-Uk 7:4453CrossRefGoogle Scholar
  60. Zhao H, Che H, Zhang X, Ma Y, Wang Y, Wang X, Liu C, Hou B, Che H (2013) Aerosol optical properties over urban and industrial region of Northeast China by using ground-based sun-photometer measurement. Atmos Environ 75:270–278CrossRefGoogle Scholar
  61. Zheng Y, Che H, Zhao T, Xia X, Gui K, An L, Qi B, Wang H, Wang Y, Yu J, Zhang X (2016) Aerosol optical properties over Beijing during the World Athletics Championships and Victory Day Military Parade in August and September 2015. Atmosphere 7(3):47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Enwei Sun
    • 1
  • Huizheng Che
    • 2
    Email author
  • Xiaofeng Xu
    • 1
  • Zhenzhu Wang
    • 3
  • Chunsong Lu
    • 1
  • Ke Gui
    • 2
  • Hujia Zhao
    • 2
  • Yu Zheng
    • 1
  • Yaqiang Wang
    • 2
  • Hong Wang
    • 2
  • Tianze Sun
    • 2
  • Yuanxin Liang
    • 2
  • Xiaopan Li
    • 4
  • Zhizhong Sheng
    • 4
  • Linchang An
    • 5
  • Xiaoye Zhang
    • 2
  • Guangyu Shi
    • 6
  1. 1.Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological AdministrationNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Institute of Atmospheric Composition and State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological SciencesChina Meteorological Administration (CMA)BeijingChina
  3. 3.Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiChina
  4. 4.College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
  5. 5.National Meteorological Center, CMABeijingChina
  6. 6.Institute of Atmospheric Physics (IAP)Chinese Academy of SciencesBeijingChina

Personalised recommendations