Advertisement

Theoretical and Applied Climatology

, Volume 136, Issue 1–2, pp 287–299 | Cite as

Impact of missing data on the efficiency of homogenisation: experiments with ACMANTv3

  • Peter DomonkosEmail author
  • John Coll
Original Paper

Abstract

The impact of missing data on the efficiency of homogenisation with ACMANTv3 is examined with simulated monthly surface air temperature test datasets. The homogeneous database is derived from an earlier benchmarking of daily temperature data in the USA, and then outliers and inhomogeneities (IHs) are randomly inserted into the time series. Three inhomogeneous datasets are generated and used, one with relatively few and small IHs, another one with IHs of medium frequency and size, and a third one with large and frequent IHs. All of the inserted IHs are changes to the means. Most of the IHs are single sudden shifts or pair of shifts resulting in platform-shaped biases. Each test dataset consists of 158 time series of 100 years length, and their mean spatial correlation is 0.68–0.88. For examining the impacts of missing data, seven experiments are performed, in which 18 series are left complete, while variable quantities (10–70%) of the data of the other 140 series are removed.

The results show that data gaps have a greater impact on the monthly root mean squared error (RMSE) than the annual RMSE and trend bias. When data with a large ratio of gaps is homogenised, the reduction of the upper 5% of the monthly RMSE is the least successful, but even there, the efficiency remains positive. In terms of reducing the annual RMSE and trend bias, the efficiency is 54–91%. The inclusion of short and incomplete series with sufficient spatial correlation in all cases improves the efficiency of homogenisation with ACMANTv3.

Notes

Acknowledgements

The authors thank Kate Willett and her colleagues for giving open access to the temperature database they developed.

Funding information

The second author was funded by the Irish Environmental Protection Agency under project 2012-CCRP-FS.11.

References

  1. Acquaotta F, Fratianni S (2014) The importance of the quality and reliability of the historical time series for the study of climate change. Rev Bras Climatol 10:20–38Google Scholar
  2. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. World Meteorological Organization (WMO)-TD No. 1186, WCDMP No. 53, Geneva, Switzerland, 55 ppGoogle Scholar
  3. Auer I, Böhm R, Jurkovic A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin J-M, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajic-Capka M, Zaninovic K, Majstorovicp Z, Szalai S, Szentimrey T, Mercalli L (2005) A new instrumental precipitation dataset for the Greater Alpine Region for the period 1800–2002. Int J Climatol 25:139–166.  https://doi.org/10.1002/joc.1135 CrossRefGoogle Scholar
  4. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersboeck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisseline JM, Begert M, Muller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region HISTALP. Int J Climatol 27:17–46.  https://doi.org/10.1002/joc.1377 CrossRefGoogle Scholar
  5. Borges P, Franke J, Tanaka M, Weiss H, Bernhofer C (2013) Spatial interpolation of climatological information: comparison of methods for the development of precipitation distribution in Distrito Federal, Brazil. Atmos Clim Sci 3(2):208–217.  https://doi.org/10.4236/acs.2013.32022 Google Scholar
  6. Borges P, Franke J, Santos Silva FD, Weiss H, Bernhofer C (2014) Differences between two climatological periods (2001–2010 vs. 1971–2000) and trend analysis of temperature and precipitation in Central Brazil. Theor Appl Climatol 116:191–202.  https://doi.org/10.1007/s00704-013-0947-4 CrossRefGoogle Scholar
  7. Brunet M, Saladié O, Jones P, Sigró J, Aguilar E, Moberg A, Lister D, Walther A, Lopez D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Int J Climatol 26:1777–1802.  https://doi.org/10.1002/joc.1338 CrossRefGoogle Scholar
  8. Coll J, Curley M, Walsh S, and Sweeney J (2018) HOMERUN: relative homogenisation of the Irish precipitation network. EPA Research Report 2012-CCRP-FS.11 Report No. 242. Environmental Protection Agency, Wexford, pp32Google Scholar
  9. Costa AC, Soares A (2009) Homogenization of climate data: review and new perspectives using geostatistics. Math Geosci 41(3):291–305CrossRefGoogle Scholar
  10. Domonkos P (2011a) Efficiency evaluation for detecting inhomogeneities by objective homogenisation methods. Theor Appl Climatol 105:455–467.  https://doi.org/10.1007/s00704-011-0399-7 CrossRefGoogle Scholar
  11. Domonkos P (2011b) Adapted Caussinus-Mestre algorithm for networks of temperature series (ACMANT). Int J Geosci 2:293–309.  https://doi.org/10.4236/ijg.2011.23032 CrossRefGoogle Scholar
  12. Domonkos P (2015) Homogenization of precipitation time series with ACMANT. Theor Appl Climatol 122:303–314.  https://doi.org/10.1007/s00704-014-1298-5 CrossRefGoogle Scholar
  13. Domonkos P, Coll J (2017a) Homogenisation of temperature and precipitation time series with ACMANT3: method description and efficiency tests. Int J Climatol 37:1910–1921.  https://doi.org/10.1002/joc.4822 CrossRefGoogle Scholar
  14. Domonkos P, Coll J (2017b) Time series homogenisation of large observational datasets: the impact of the number of partner series on the efficiency. Clim Res 74:31–42.  https://doi.org/10.3354/cr01488 CrossRefGoogle Scholar
  15. Gimmi U, Luterbacher J, Pfister C, Wanner H (2007) A method to reconstruct long precipitation series using systematic descriptive observations in weather diaries: the example of the precipitation series for Bern, Switzerland (1760–2003). Theor Appl Climatol 87:185–199.  https://doi.org/10.1007/s00704-005-0193-5 CrossRefGoogle Scholar
  16. Gubler S, Hunziker S, Begert M, Croci-Maspoli M, Konzelmann T, Brönnimann S, Schwierz C, Oria C, Rosas G (2017) The influence of station density on climate data homogenization. Int J Climatol 37:4670–4683.  https://doi.org/10.1002/joc.5114 CrossRefGoogle Scholar
  17. Guentchev G, Barsugli JJ, Eischeid J (2010) Homogeneity of gridded precipitation datasets for the Colorado River Basin. J Appl Meteorol Climatol 49:2404–2415.  https://doi.org/10.1175/2010JAMC2484.1 CrossRefGoogle Scholar
  18. Guijarro JA (2014) User’s Guide to Climatol. http://www.meteobal.com/climatol/climatol-guide.pdf
  19. Guijarro JA, López JA, Aguilar E, Domonkos P, Venema V, Sigró J, Brunet M (2017) Comparison of homogenization packages applied to monthly series of temperature and precipitation: the MULTITEST project. Ninth Seminar for Homogenization and Quality Control in Climatological Databases (Ed Szentimrey T, Lakatos M, Hoffmann L) WMO WCDMP-85:46–62Google Scholar
  20. Hannart A, Mestre O, Naveau P (2014) An automatized homogenization procedure via pairwise comparisons with application to Argentinean temperature series. Int J Climatol 34:3528–3545.  https://doi.org/10.1002/joc.3925 CrossRefGoogle Scholar
  21. Hausfather Z, Menne MJ, Williams CN, Masters T, Broberg R, Jones D (2013) Quantifying the effect of urbanization on U.S. Historical Climatology Network temperature records. J Geophys Res Atmos 118:481–494.  https://doi.org/10.1029/2012JD018509 CrossRefGoogle Scholar
  22. Hua W, Shen SSP, Weithmann A, Wang H (2017) Estimation of sampling error uncertainties in observed surface air temperature change in China. Theor Appl Climatol 129:1133–1144.  https://doi.org/10.1007/s00704-016-1836-4 CrossRefGoogle Scholar
  23. Huang J, van den Dool HM, Barnston AG (1996) Long-lead seasonal temperature prediction using optimal climate normals. J Clim 9:809–817CrossRefGoogle Scholar
  24. Hunziker S, Brönnimann S, Calle J, Moreno I, Andrade M, Ticona L, Huerta A, Lavado-Casimiro W (2018) Effects of undetected data quality issues on climatological analyses. Clim Past 14:1–20.  https://doi.org/10.5194/cp-14-1-2018 CrossRefGoogle Scholar
  25. Huth R, Nemesova I (1995) Estimation of missing daily temperatures: can a weather categorization improve its accuracy? J Clim 8:1901–1916CrossRefGoogle Scholar
  26. Jones PD, Lister DH (2010) The urban heat island in Central London and urban-related warming trends in Central London since 1900. Weather 64:323–327.  https://doi.org/10.1002/wea.432 CrossRefGoogle Scholar
  27. Kemp WP, Burnell DG, Everson DO, Thomson AJ (1983) Estimating missing daily maximum and minimum temperatures. J Clim Appl Meteorol 22:1587–1593CrossRefGoogle Scholar
  28. Killick RE (2016) Benchmarking the performance of homogenisation algorithms on daily temperature data. PhD thesis, University of Exeter, UK. https://ore.exeter.ac.uk/repository/handle/10871/23095
  29. Klok EJ, Klein Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191.  https://doi.org/10.1002/joc.1779 CrossRefGoogle Scholar
  30. Lindau R, Venema V (2016) The uncertainty of break positions detected by homogenization algorithms in climate records. Int J Climatol 36:576–589.  https://doi.org/10.1002/joc.4366 CrossRefGoogle Scholar
  31. Menne MJ, Williams CN (2009) Homogenization of temperature series via pairwise comparisons. J Clim 22:1700–1717.  https://doi.org/10.1175/2008JCLI2263.1 CrossRefGoogle Scholar
  32. Menne MJ, Williams CN, Vose RS (2009) The U.S. Historical Climatology Network monthly temperature data, version 2. Bull Am Meteorol Soc 90:993–1007.  https://doi.org/10.1175/2008BAMS2613.1 CrossRefGoogle Scholar
  33. Mestre O, Gruber C, Prieur C, Caussinus H, Jourdain S (2011) SPLIDHOM: a method for homogenization of daily temperature observations. J Appl Meteorol Climatol 50:2343–2358.  https://doi.org/10.1175/2011JAMC2641.1 CrossRefGoogle Scholar
  34. Mestre O, Domonkos P, Picard F, Auer I, Robin S, Lebarbier E, Böhm R, Aguilar E, Guijarro J, Vertacnik G, Klancar M, Dubuisson B, Štěpánek P (2013) HOMER: homogenization software in R—methods and applications. Idojaras Q J Hung Meteorol Serv 117:47–67Google Scholar
  35. Oyler JW, Ballantyne A, Jencso K, Sweet M, Runninga SW (2015) Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. Int J Climatol 35:2258–2279.  https://doi.org/10.1002/joc.4127 CrossRefGoogle Scholar
  36. Peterson TC, Easterling DR (1994) Creation of homogeneous composite climatological reference series. Int J Climatol 14:671–679CrossRefGoogle Scholar
  37. Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Böhm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salingeri J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517CrossRefGoogle Scholar
  38. Prohom M, Barriendos M, Sanchez-Lorenzo A (2016) Reconstruction and homogenization of the longest instrumental precipitation series in the Iberian Peninsula (Barcelona, 1786–2014). Int J Climatol 36:3072–3087.  https://doi.org/10.1002/joc.4537 CrossRefGoogle Scholar
  39. Ribeiro S, Caineta J, Costa AC (2016) Review and discussion of homogenisation methods for climate data. Phys Chem Earth 94:167–179.  https://doi.org/10.1016/j.pce.2015.08.007 CrossRefGoogle Scholar
  40. Rienzner M, Gandolfi C (2011) A composite statistical method for the detection of multiple undocumented abrupt changes in the mean value within a time series. Int J Climatol 31:742–755.  https://doi.org/10.1002/joc.2113 CrossRefGoogle Scholar
  41. Spinoni J, Szalai S, Szentimrey T, Lakatos M, Bihari Z, Andrea Nagy A, Németh Á, Kovács T, Mihic D, Dacic M, Petrovic P, Kržič A, Hiebl J, Auer I, Milkovic J, Štepánek P, Zahradnícek P, Kilar P, Limanowka D, Pyrc R, Cheval S, Birsan M-V, Dumitrescu A, Deak G, Matei M, Antolovic I, Nejedlík P, Štastný P, Kajaba P, Bochnícek O, Galo D, Mikulová K, Nabyvanets Y, Skrynyk O, Krakovska S, Gnatiuk N, Tolasz R, Antofie T, Vogt J (2015) Climate of the Carpathian region in the period 1961–2010: climatologies and trends of 10 variables. Int J Climatol 35:1322–1341.  https://doi.org/10.1002/joc.4059 CrossRefGoogle Scholar
  42. Szentimrey T (1999) Multiple analysis of series for homogenization (MASH). In: Szalai S, Szentimrey T, Szinell Cs (eds) Proc 2nd Seminar for Homo-genization of Surface Climatological Data. WMO WCDMP 41, pp 27–46Google Scholar
  43. Szentimrey T (2010) Methodological questions of series comparison. In: Lakatos M, Szentimrey T, Bihari Z, Szalai S (eds) 6th Seminar for Homogenization and Quality Control in Climatological Databases. WMO WCDMP-76, pp 1–7Google Scholar
  44. Tardivo G (2015) Spatial and time correlation of thermometers and pluviometers in a weather network database. Theor Appl Climatol 120:19–28.  https://doi.org/10.1007/s00704-014-1148-5 CrossRefGoogle Scholar
  45. Tardivo G, Berti A (2012) A dynamic method for gap filling in daily temperature datasets. J Appl Meteorol Climatol 51:1079–1086.  https://doi.org/10.1175/JAMC-D-11-0117.1 CrossRefGoogle Scholar
  46. Thorne PW, Menne MJ, Williams CN, Rennie JJ, Lawrimore JH, Vose RS, Peterson TC, Durre I, Davy R, Esau I, Klein-Tank AMG, Merlone A (2016) Reassessing changes in diurnal temperature range: a new data set and characterization of data biases. J Geophys Res Atmos 121:5115–5137.  https://doi.org/10.1002/2015JD024583 CrossRefGoogle Scholar
  47. Thorne PW, Allan R, Ashcroft L, Brohan P, Dunn R, Menne M, Pearce P, Picas J, Willett K, Benoy M, Bronnimann S, Canziani P, Coll J, Crouthamel R, Compo G, Cuppett D, Curley M, Duffy C, Gillespie I, Guijarro J, Jourdain S, Kent E, Kubota H, Legg T, Li Q, Matsumoto J, Murphy C, Rayner N, Rennie J, Rustemeier E, Slivinski L, Slonosky V, Squintu A, Tinz B, Valente M, Walsh S, Wang X, Westcott N, Wood K, Woodruff S, Worley S (2017) Towards an integrated set of surface meteorological observations for climate science and applications. Bull Am Meteorol Soc 98:2689–2702.  https://doi.org/10.1175/BAMS-D-16-0165.1 CrossRefGoogle Scholar
  48. Venema V, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P, Vertacnik G, Szentimrey T, Štěpánek P, Zahradnicek P, Viarre J, Müller-Westermeier G, Lakatos M, Williams CN, Menne M, Lindau R, Rasol D, Rustemeier E, Kolokythas K, Marinova T, Andresen L, Acquaotta F, Fratianni S, Cheval S, Klancar M, Brunetti M, Gruber C, Duran MP, Likso T, Esteban P, Brandsma T (2012) Benchmarking monthly homogenization algorithms. Clim Past 8:89–115.  https://doi.org/10.5194/cp-8-89-2012 CrossRefGoogle Scholar
  49. Willett KM, Williams CN, Jolliffe I, Lund R, Alexander L, Brönniman S, Vincent LA, Easterbrook S, Venema V, Berry D, Warren R, Lopardo G, Auchmann R, Aguilar E, Menne M, Gallagher C, Hausfather Z, Thorarinsdottir T, Thorne PW (2014) A framework for benchmarking of homogenisation algorithm performance on the global scale. Geosci Instrum Method Data Syst 3:187–200.  https://doi.org/10.5194/gi-3-187-2014 CrossRefGoogle Scholar
  50. WMO (2016). Web site of the Task Team on HOMOGENIZATION (OPACE2, WMO Commission for Climatology). http://www.climatol.eu/DARE. Accessed Aug 2017

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UnaffiliatedTortosaSpain
  2. 2.Irish Climate Analysis and Research UnitS (ICARUS), Department of GeographyMaynooth UniversityMaynoothIreland

Personalised recommendations