Theoretical and Applied Climatology

, Volume 136, Issue 1–2, pp 333–346 | Cite as

Observing continental boundary-layer structure and evolution over the South African savannah using a ceilometer

  • Rosa T. Gierens
  • Svante HenrikssonEmail author
  • Micky Josipovic
  • Ville Vakkari
  • Pieter G. van Zyl
  • Johan P. Beukes
  • Curtis R. Wood
  • Ewan J. O’Connor
Original Paper


The atmospheric boundary layer (BL) is the atmospheric layer coupled to the Earth’s surface at relatively short timescales. A key quantity is the BL depth, which is important in many applied areas of weather and climate such as air-quality forecasting. Studying BLs in climates and biomes across the globe is important, particularly in the under-sampled southern hemisphere. The present study is based on a grazed grassland-savannah area in northwestern South Africa during October 2012–August 2014. Ceilometers are probably the cheapest method for measuring continuous aerosol profiles up to several kilometers above ground and are thus an ideal tool for long-term studies of BLs. A ceilometer-estimated BL depth is based on profiles of attenuated backscattering coefficients from atmospheric aerosols; the sharpest drop often occurs at BL top. Based on this, we developed a new method for layer detection that we call the signal-limited layer method. The new algorithm was applied to ceilometer profiles which thus classified BL into classic regime types: daytime convective mixing, and a double layer at night of surface-based stable with a residual layer above it. We employed wavelet fitting to increase successful BL estimation for noisy profiles. The layer-detection algorithm was supported by an eddy-flux station, rain gauges, and manual inspection. Diurnal cycles were often clear, with BL depth detected for 50% of the daytime typically being 1–3 km, and for 80% of the night-time typically being a few hundred meters. Variability was also analyzed with respect to seasons and years. Finally, BL depths were compared with ERA-Interim estimates of BL depth to show reassuring agreement.


  1. Barlow JF, Dunbar TM, Nemitz EG, Wood CR, Gallagher MW, Davies F, O’Connor E, Harrison RM (2011) Boundary layer dynamics over London, UK, as observed using doppler lidar during repartee-ii. Atmos Chem Phys 11(5):2111–2125. CrossRefGoogle Scholar
  2. Barlow JF, Halios CH, Lane SE, Wood CR (2015) Observations of urban boundary layer structure during a strong urban heat island event. Environ Fluid Mech 15(2):373–398. CrossRefGoogle Scholar
  3. Becker S (2005) Thermal structure of the atmospheric boundary layer over the south african mpumalanga highveld. Clim Res 29:129–137CrossRefGoogle Scholar
  4. Beukes JP, Venter AD, Josipovic M, Van Zyl PG, Vakkari V, Jaars K, Dunn M, Laakso L (2015) Automated continuous air monitoring. Compr Anal Chem 70:183–208CrossRefGoogle Scholar
  5. Brooks IM (2003) Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles. J Atmos Ocean Technol 20(8):1092–1105CrossRefGoogle Scholar
  6. Caicedo V, Rappenglück B, Lefer B, Morris G, Toledo D, Delgado R (2017) Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos Meas Tech 10:1609–1622CrossRefGoogle Scholar
  7. Di Giuseppe F, Riccio A, Caporaso L, Bonafé G, Gobbi GP, Angelini F (2012) Automatic detection of atmospheric boundary layer height using ceilometer backscatter data assisted by a boundary layer model. Q J R Meteorol Soc 138(664):649–663CrossRefGoogle Scholar
  8. Emeis S (2011) Surface-based remote sensing of the atmospheric boundary layer. Springer Science+Business Media B.V., Dordrecht. ISBN 9048193400Google Scholar
  9. Endlich RM, Ludwig FL, Uthe EE (1979) An automatic method for determining the mixing depth from lidar observations. Atmos Environ (1967) 13(7):1051–1056CrossRefGoogle Scholar
  10. Eresmaa N, Karppinen A, Joffre SM, Räsänen J, Talvitie H (2006) Mixing height determination by ceilometer. Atmos Chem Phys 6(6):1485–1493CrossRefGoogle Scholar
  11. Esau I, Zilitinkevich S, Djolov G, Rautenbach deWCJ (2010) A micrometeorological experiment in the atmospheric boundary layer in highveld region. In: IOP conference series: earth and environmental science, p 13.
  12. Freiman MT, Piketh SJ (2003) Free access air transport into and out of the industrial highveld region of south africa. J Appl Meteorol Climatol.<0994:ATIAOO>2.0.CO;2
  13. Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  14. Gierens RT (2015) Understanding the evolution of the boundary layer over the highveld, South Africa. Master’s thesis, University of HelsinkiGoogle Scholar
  15. Griffiths AD, Parkes SD, Chambers SD, McCabe MF, Williams AG (2013) Improved mixing height monitoring through a combination of lidar and radon measurements. Atmos Meas Tech 6(2):207–218. CrossRefGoogle Scholar
  16. Harrison RG, Hogan RJ (2006) In situ atmospheric turbulence measurement using the terrestrial magnetic fielda compass for a radiosonde. J Atmos Ocean Technol 23(3):517–523. CrossRefGoogle Scholar
  17. Harvey NJ, Hogan RJ, Dacre HF (2013) A method to diagnose boundary-layer type using doppler lidar. Q J R Meteorol Soc 139(676):1681–1693. ISSN 1477-870X. CrossRefGoogle Scholar
  18. Heese B, Flentje H, Althausen D, Ansmann A, Frey S (2010) Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos Meas Tech 3(6):1763–1770CrossRefGoogle Scholar
  19. Held G (1996) Wind and temperature profiles in the boundary layer above the Kruger National Park during Safari-92. J Geophys Res 101:23737–23743. CrossRefGoogle Scholar
  20. Hirsikko A, Vakkari V, Tiitta P, Hatakka J, Kerminen V-M, Sundström A-M, Beukes JP, Manninen HE, Kulmala M, Laakso L (2013) Multiple daytime nucleation events in semi-clean savannah and industrial environments in South Africa: analysis based on observations. Atmos Chem Phys 13(11):5523–5532CrossRefGoogle Scholar
  21. Hirsikko A, O’Connor EJ, Komppula M, Korhonen K, Pfüller A, Giannakaki E, Wood CR, Bauer-Pfundstein M, Poikonen A, Karppinen T, Lonka H, Kurri M, Heinonen J, Moisseev D, Asmi E, Aaltonen V, Nordbo A, Rodriguez E, Lihavainen H, Laaksonen A, Lehtinen KEJ, Laurila T, Petäjä T, Kulmala M, Viisanen Y (2014) Observing wind, aerosol particles, cloud and precipitation: Finland’s new ground-based remote-sensing network. Atmos Meas Tech 7(5):1351–1375. CrossRefGoogle Scholar
  22. Hobbs PV (2003) Clean air slots amid dense atmospheric pollution in southern Africa. J Geophys Res-Atmos 108 (D13):8490. Google Scholar
  23. Jaars K, van Zyl PG, Beukes JP, Hellén H, Vakkari V, Josipovic M, Venter AD, Räsänen M, Knoetze L, Cilliers DP, Siebert SJ, Kulmala M, Rinne J, Guenther A, Laakso L, Hakola H (2016) Measurements of biogenic volatile organic compounds at a grazed savannah-grassland-agriculture landscape in south africa. Atmos Chem Phys Discuss 1–46.
  24. Jordan NS, Hoff RM, Bacmeister JT (2010) Validation of Goddard Earth observing system-version 5 MERRA planetary boundary layer heights using CALIPSO. J Geophys Res-Atmos (1984–2012) 115(D24)Google Scholar
  25. Jury M, Tosen G (1989) Characteristics of the winter boundary layer over the, African plateau: 26deg south. Boundary-Layer Meteorol 49:53–76CrossRefGoogle Scholar
  26. Korhonen K, Giannakaki E, Mielonen T, Pfüller A, Laakso L, Vakkari V, Baars H, Engelmann R, Beukes JP, Van Zyl PG, Ramandh A, Ntsangwane L, Josipovic M, Tiitta P, Fourie G, Ngwana I, Chiloane K, Komppula M (2014) Atmospheric boundary layer top height in South Africa: measurements with lidar and radiosonde compared to three atmospheric models. Atmos Chem Phys 14(8):4263–4278CrossRefGoogle Scholar
  27. Kotthaus S, O’Connor E, Münkel C, Charlton-Perez C, Haeffelin M, Gabey AM, Grimmond CSB (2016) Recommendations for processing atmospheric attenuated backscatter profiles from vaisala cl31 ceilometers. Atmos Meas Tech 9(8):3769–3791. CrossRefGoogle Scholar
  28. Kuik F, Lauer A, Beukes JP, Van Zyl PG, Josipovic M, Vakkari V, Laakso L, Feig GT (2015) The anthropogenic contribution to atmospheric black carbon concentrations in southern africa: a wrf-chem modeling study. Atmos Chem Phys 15:8809–8830. CrossRefGoogle Scholar
  29. Labonne M, Bréon FM, Chevallier F (2007) Injection height of biomass burning aerosols as seen from a spaceborne lidar. Geophys Res Lett 34(11):L11806. CrossRefGoogle Scholar
  30. Lotteraner C, Piringer M (2016) Mixing-height time series from operational ceilometer aerosol-layer heights. Bound-Layer Meteorol 161(2):265–287. CrossRefGoogle Scholar
  31. Luhunga P, Esau I, Djolov G (2010) A study of stable atmospheric boundary layer over highveld South Africa. In: International conference on planetary boundary layer and climate change, IOP Conference Series: Earth and Environmental Science, vol 13.
  32. Luhunga P, Djolov G, Sivakumar V (2011) Stable atmospheric boundary layer characterization over highveld region of south africa. In: South African Society for atmospheric sciences, 27th annual conference 22–23 September 2011 North-West Province, South Africa, Peer reviewed conference proceedingsGoogle Scholar
  33. Münkel C, Eresmaa N, Räsänen J, Karppinen A (2007) Retrieval of mixing height and dust concentration with lidar ceilometer. Bound-Layer Meteorol 124(1):117–128CrossRefGoogle Scholar
  34. NOAA National Geophysical Data Center (1988) ETOPO5 5-minute gridded elevation data. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth.
  35. Peng J, Grimmond CSB, Fu XS, Chang YY, Zhang G, Guo J, Tang CY, Gao J, Xu XD, Tan JG (2017) Ceilometer based analysis of Shanghai’s boundary layer height (under rain and fog free conditions). J Atmos Oceanic Technol 34:749–764. CrossRefGoogle Scholar
  36. Pinsky M, Khain A, Krugliak H (2008) Collisions of cloud droplets in a turbulent flow. Part V: application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J Atmos Sci 65(2):357–374. CrossRefGoogle Scholar
  37. Preston-Whyte RA, Diab RD, Tyson PD (1977) Towards an inversion climatology of Southern Africa: part II, non-surface inversions in the lower atmosphere. S Afr Geogr J 59(1):45–59CrossRefGoogle Scholar
  38. Räsänen M, Aurela M, Vakkari V, Beukes JP, Van Zyl PG, Josopovic A, Venter AD, Jaars K, Siebert SJ, Laurila T, Rinne J, Laakso L (2016) Seasonal variation of carbon balance in grazed semi-arid savanna ecosystem, South Africa, in preparationGoogle Scholar
  39. Salmond J, McKendry I (2005) A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Prog Phys Geogr 29(2):171–188CrossRefGoogle Scholar
  40. Scheifinger H, Held G (1997) Aerosol behaviour on the south african highveld. Atmos Environ 31:3497–3509. CrossRefGoogle Scholar
  41. Schween JH, Hirsikko A, Löhnert U, Crewell S (2014) Mixing-layer height retrieval with ceilometer and doppler lidar: from case studies to long-term assessment. Atmos Meas Tech 7(11):3685–3704. CrossRefGoogle Scholar
  42. Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34(7):1001–1027CrossRefGoogle Scholar
  43. Sinclair VA, Belcher SE, Gray SL (2010) Synoptic controls on boundary-layer characteristics. Bound-Layer Meteorol 134(3):387–409CrossRefGoogle Scholar
  44. Sivakumar V, Sharma A, Bollig C (2011) Retrieval of atmospheric boundary layer height by CSIR NLC mobile Lidar, Pretoria \((25.5\deg \text {s}; 28.2\deg \text {e})\), South Africa. In: Geoscience and Remote Sensing Symposium (IGARSS), 2011, IAAA.
  45. Steyn DG, Baldi M, Hoff R (1999) The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J Atmos Ocean Technol 16(7):953–959CrossRefGoogle Scholar
  46. Stull RB (1988) An introduction to boundary layer meteorology, vol 13. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  47. Sundström AM, Nikandrova A, Atlaskina K, Nieminen T, Vakkari V, Laakso L, Beukes JP, Arola A, van Zyl PG, Josipovic M, Venter AD, Jaars K, Pienaar JJ, Piketh S, Wiedensohler A, Chiloane DLEKG, Kulmala M (2015) Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa. Atmos Chem Phys 15:4983–4996CrossRefGoogle Scholar
  48. Tennant W, Hewitson B (2011) Intra-seasonal rainfall characteristics and their importance to the seasonal prediction problem. Int J Climatol 22:1033–1048. CrossRefGoogle Scholar
  49. Thomas D, Twyman C, Osbahr H, Hewitson B (2007) Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Clim Change 83:301–322. CrossRefGoogle Scholar
  50. Tiitta P, Vakkari V, Croteau P, Beukes JP, van Zyl PG, Josipovic M, Venter AD, Jaars K, Pienaar JJ, Ng NL, Canagaratna MR, Jayne JT, Kerminen V-M, Kokkola H, Kulmala M, Laaksonen A, Worsnop DR, Laakso L (2014) Chemical composition, main sources and temporal variability of PM1 aerosols in Southern African grassland. Atmos Chem Phys 14(4):1909–1927CrossRefGoogle Scholar
  51. Tyson P, Gatebe C (2001) The atmosphere, aerosols, trace gases and biogeochemical change in southern Africa: A regional integration. S Afr J Sci 97:106–118Google Scholar
  52. Tyson PD, Preston-Whyte RA, Diab RD (1976) Towards an inversion climatology of southern Africa: Part I, Surface inversions. S Afr Geogr J 58(2):151–163CrossRefGoogle Scholar
  53. Tyson P, Kruger FJ, Louw CW (1988) Atmospheric pollution and its implications in the eastern transvaal highveld. National Scientific Programmes Unit: CSIR, SANSP Report 150:1–123Google Scholar
  54. Tyson P, Garstang M, Swap R (1996) Large-scale recirculation of air over southern Africa. J Appl Meteorol 35(12):2218–2236CrossRefGoogle Scholar
  55. Tyson PD, Preston-Whyte RA (2012) Weather and climate of southern Africa. Oxford University Press, OxfordGoogle Scholar
  56. Uzan L, Egert S, Alpert P (2016) Ceilometer evaluation of the eastern mediterranean summer boundary layer height – first study of two israeli sites. Atmos Meas Tech 9:4387–4398. CrossRefGoogle Scholar
  57. Vaisala (1999) CEILOMETER CT25K User’s GuideGoogle Scholar
  58. Vakkari V, Kerminen V-M, Beukes JP, Tiitta P, van Zyl PG, Josipovic M, Venter AD, Jaars K, Worsnop DR, Kulmala M, Laakso L (2014) Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys Res Lett 41(7):2644–2651. ISSN 1944-8007CrossRefGoogle Scholar
  59. Vakkari V, O’Connor EJ, Nisantzi A, Mamouri RE, Hadjimitsis DG (2015a) Low-level mixing height detection in coastal locations with a scanning doppler lidar. Atmos Meas Tech 8(4):1875–1885. CrossRefGoogle Scholar
  60. Vakkari V, Tiitta P, Jaars K, Croteau P, Beukes JP, Josipovic M, Kerminen V-M, Kulmala M, Venter AD, van Zyl PG, Worsnop DR, Laakso L (2015b) Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth. Geophys Res Lett 42(23):10486–10493. ISSN 1944-8007. 2015GL066459CrossRefGoogle Scholar
  61. van der Kamp D, McKendry I (2010) Diurnal and seasonal trends in convective mixed-layer heights estimated from two years of continuous ceilometer observations in Vancouver, BC. Bound-Layer Meteorol 137(3):459–475CrossRefGoogle Scholar
  62. Van Gogh R, Landenberg H, Brassel K, Danford I (1982) Dispersion climatology and characteristics of sulphur dioxide pollution in eastern transvaal highveld. In: ATMOS/82/3, Atmospheric Science Division, CSIR, Pretoria, pp 1–117Google Scholar
  63. Venter AD, Beukes JP, van Zyl PG, Josipovic M, Jaars K, Vakkari V (2016) Regional atmospheric cr (vi) pollution from the bushveld complex, South Africa. Atmos Pollut Res 7(5):762–767CrossRefGoogle Scholar
  64. Vogelezang DHP, Holtslag AAM (1996) Evaluation and model impacts of alternative boundary-layer height formulations. Bound-Layer Meteorol 81(3-4):245–269CrossRefGoogle Scholar
  65. von Engeln A, Teixeira J (2013) A planetary boundary layer height climatology derived from ecmwf reanalysis data. J Clim 26(17):6575–6590. CrossRefGoogle Scholar
  66. Wehner B, Siebert H, Ansmann A, Ditas F, Seifert P, Stratmann F, Wiedensohler A, Apituley A, Shaw RA, Manninen HE, Kulmala M (2010) Observations of turbulence-induced new particle formation in the residual layer. Atmos Chem Phys 10:4319–4330. CrossRefGoogle Scholar
  67. Yasui M, Liu L, Itabe T, Takemi T, Uchiyama A, Yamazaki A, Zhou J, Mizutani K (2006) Dust profiles of the atmospheric boundary layer observed by a laser ceilometer at shapatou, china in 2004. In: Proceedings of the SPIE 6409, Lidar Remote Sensing for Environmental Monitoring VII, 64091N.

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Rosa T. Gierens
    • 1
    • 5
  • Svante Henriksson
    • 2
    • 3
    Email author
  • Micky Josipovic
    • 3
  • Ville Vakkari
    • 2
  • Pieter G. van Zyl
    • 3
  • Johan P. Beukes
    • 3
  • Curtis R. Wood
    • 2
  • Ewan J. O’Connor
    • 2
    • 4
  1. 1.Division of Atmospheric SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Finnish Meteorological InstituteHelsinkiFinland
  3. 3.Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa
  4. 4.University of ReadingReadingUK
  5. 5.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany

Personalised recommendations