Theoretical and Applied Climatology

, Volume 136, Issue 1–2, pp 135–144 | Cite as

The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle

  • Tao Hong
  • Wenjie DongEmail author
  • Dong Ji
  • Tanlong Dai
  • Shili Yang
  • Ting Wei
Original Paper


The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon–climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P − E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.


Funding information

This study was funded by the National Key Research and Development Program of China Grant (2016YFA0602703), the Key Program of the National Natural Science Foundation of China (Grant No. 41330527), the National Natural Science Foundation of China (41605036), the National-Level Major Cultivation Project of Guangdong Province (2014GKXM058), and the China Postdoctoral Fund (No.2016M591108).

Supplementary material

704_2018_2476_MOESM1_ESM.docx (398 kb)
ESM 1 (DOCX 397 kb)


  1. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration irrigation and drainage, 300(56), 300Google Scholar
  2. Berg A, Findell K, Lintner B, Giannini A, Seneviratne SI, van den Hurk B et al (2016) Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat Clim Chang 6(9):869–874CrossRefGoogle Scholar
  3. Berg A, Sheffield J, Milly PCD (2017) Divergent surface and total soil moisture projections under global warming. Geophys Res Lett 44(1):236–244CrossRefGoogle Scholar
  4. Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387(6635):796–799CrossRefGoogle Scholar
  5. Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N et al (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448(7157):1037–1041CrossRefGoogle Scholar
  6. Chen, M., Xie, P., Janowiak, J. E., & Arkin, P. A. (2002). Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3(3), 249–266Google Scholar
  7. De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T et al (2013) Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Glob Chang Biol 19(6):1759–1779CrossRefGoogle Scholar
  8. Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40(12):3031–3035CrossRefGoogle Scholar
  9. Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13(19):10081–10094CrossRefGoogle Scholar
  10. Forkel M, Migliavacca M, Thonicke K, Reichstein M, Schaphoff S, Weber U, Carvalhais N (2015) Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob Chang Biol 21(9):3414–3435CrossRefGoogle Scholar
  11. Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlström A, Ciais P, Friedlingstein P, Levis S, Lomas M, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, D‘Alessandro CM, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M (2015) Water-use efficiency and transpiration across European forests during the Anthropocene. Nat Clim Chang 5(6):579–583CrossRefGoogle Scholar
  12. Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439(7078):838CrossRefGoogle Scholar
  13. Huang M, Piao S, Sun Y, Ciais P, Cheng L, Mao J, Poulter B, Shi X, Zeng Z, Wang Y (2015) Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob Chang Biol 21(6):2366–2378CrossRefGoogle Scholar
  14. Huang J, Yu H, Dai A, Wei Y, Kang L (2017) Drylands face potential threat under 2 °C global warming target. Nat Clim Chang 7(6):417–422CrossRefGoogle Scholar
  15. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1535Google Scholar
  16. Kolby Smith W, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, Wieder WR et al (2015) Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat Clim Chang 6(3):306–310CrossRefGoogle Scholar
  17. Mao J, Shi X, Thornton PE, Hoffman FM, Zhu Z, Myneni RB (2013) Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009. Remote Sens 5(3):1484–1497CrossRefGoogle Scholar
  18. Mao J, Fu W, Shi X, Ricciuto DM, Fisher JB, Dickinson RE et al (2015) Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ Res Lett 10(9):94008CrossRefGoogle Scholar
  19. Milly PCD, Dunne KA (2016) Potential evapotranspiration and continental drying. Nat Clim Chang 6(10):946–949CrossRefGoogle Scholar
  20. Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN, Scott RL, Wang L, Phillips RP (2016) The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Chang 6(11):1023–1027CrossRefGoogle Scholar
  21. Peng J, Dan L, Dong WJ (2014) Are there interactive effects of physiological and radiative forcing produced by increased CO2 concentration on changes of land hydrological cycle? Glob Planet Chang 112:64–78CrossRefGoogle Scholar
  22. Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci U S A 104(39):15242–15247CrossRefGoogle Scholar
  23. Piao S, Yin G, Tan J, Cheng L, Huang M, Li Y, Liu R, Mao J, Myneni RB, Peng S, Poulter B, Shi X, Xiao Z, Zeng N, Zeng ZZ, Wang Y (2015) Detection and attribution of vegetation greening trend in China over the last 30 years. Glob Chang Biol 21(4):1601–1609CrossRefGoogle Scholar
  24. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J et al (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509(7502):600–603CrossRefGoogle Scholar
  25. Reich PB, Hobbie SE, Lee TD (2014) Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat Geosci 7(12):920–924CrossRefGoogle Scholar
  26. Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO et al (1996) Comparison of radiative and physiological effects of doubled atmospheric CO_2 on climate. Science 271(5):1402–1406CrossRefGoogle Scholar
  27. Swann ALS, Hoffman FM, Koven CD, Randerson JT (2016) Plant responses to increasing CO 2 reduce estimates of climate impacts on arid severity. Proc Natl Acad Sci 113(36):10019–10024CrossRefGoogle Scholar
  28. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498CrossRefGoogle Scholar
  29. Trancoso R, Larsen JR, McVicar TR, Phinn SR, McAlpine CA (2017) CO2-vegetation feedbacks and other climate changes implicated in reducing base flow. Geophys Res Lett 44(5):2310–2318Google Scholar
  30. Ukkola AM, Prentice IC, Keenan TF, van Dijk AIJM, Viney NR, Myneni RB, Bi J (2015) Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat Clim Chang 6(1):75–78CrossRefGoogle Scholar
  31. Ukkola AM, Keenan TF, Kelley DI, Prentice IC (2016) Vegetation plays an important role in mediating future water resources. Environ Res Lett 11(9):94022CrossRefGoogle Scholar
  32. UNEP (United Nations Environment Programme) World Atlas of Desertification 182(Edward Arnold, 1997)Google Scholar
  33. University of East Anglia Climatic Research Unit, Harris, I.C, Jones, P.D. (2017): CRU TS4.00: climatic research unit (CRU) time-series (TS) version 4.00 of high resolution gridded data of month-by-month variation in climate (Jan. 1901-Dec. 2015). Centre for Environmental Data Analysis.
  34. Yang H, Piao S, Zeng Z, Ciais P, Yin Y, Friedlingstein P, Wang L (2015) Multicriteria evaluation of discharge simulation in dynamic global vegetation models. J Geophys Res Atmos 120:7488–7505CrossRefGoogle Scholar
  35. Yang Y, Guan H, Batelaan O, McVicar TR, Long D, Piao S, Simmons CT (2016a) Contrasting responses of water use efficiency to arid across global terrestrial ecosystems. Sci Rep 6(1):23284CrossRefGoogle Scholar
  36. Yang Y, Donohue RJ, McVicar TR, Roderick ML, Beck HE (2016b) Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. J Geophys Res Biogeosci 121:2125–2140CrossRefGoogle Scholar
  37. Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Zeng N (2016) Greening of the earth and its drivers. Nat Clim Chang 6(8):791–795CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina
  2. 2.School of Atmospheric SciencesSun Yat-Sen UniversityGuangzhouChina
  3. 3.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations