Skip to main content

Advertisement

Log in

The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon–climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P − E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration irrigation and drainage, 300(56), 300

  • Berg A, Findell K, Lintner B, Giannini A, Seneviratne SI, van den Hurk B et al (2016) Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat Clim Chang 6(9):869–874

    Article  Google Scholar 

  • Berg A, Sheffield J, Milly PCD (2017) Divergent surface and total soil moisture projections under global warming. Geophys Res Lett 44(1):236–244

    Article  Google Scholar 

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387(6635):796–799

    Article  Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N et al (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448(7157):1037–1041

    Article  Google Scholar 

  • Chen, M., Xie, P., Janowiak, J. E., & Arkin, P. A. (2002). Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3(3), 249–266

  • De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T et al (2013) Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Glob Chang Biol 19(6):1759–1779

    Article  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40(12):3031–3035

    Article  Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13(19):10081–10094

    Article  Google Scholar 

  • Forkel M, Migliavacca M, Thonicke K, Reichstein M, Schaphoff S, Weber U, Carvalhais N (2015) Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob Chang Biol 21(9):3414–3435

    Article  Google Scholar 

  • Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlström A, Ciais P, Friedlingstein P, Levis S, Lomas M, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, D‘Alessandro CM, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M (2015) Water-use efficiency and transpiration across European forests during the Anthropocene. Nat Clim Chang 5(6):579–583

    Article  Google Scholar 

  • Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439(7078):838

    Article  Google Scholar 

  • Huang M, Piao S, Sun Y, Ciais P, Cheng L, Mao J, Poulter B, Shi X, Zeng Z, Wang Y (2015) Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob Chang Biol 21(6):2366–2378

    Article  Google Scholar 

  • Huang J, Yu H, Dai A, Wei Y, Kang L (2017) Drylands face potential threat under 2 °C global warming target. Nat Clim Chang 7(6):417–422

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1535

  • Kolby Smith W, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, Wieder WR et al (2015) Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat Clim Chang 6(3):306–310

    Article  Google Scholar 

  • Mao J, Shi X, Thornton PE, Hoffman FM, Zhu Z, Myneni RB (2013) Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009. Remote Sens 5(3):1484–1497

    Article  Google Scholar 

  • Mao J, Fu W, Shi X, Ricciuto DM, Fisher JB, Dickinson RE et al (2015) Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ Res Lett 10(9):94008

    Article  Google Scholar 

  • Milly PCD, Dunne KA (2016) Potential evapotranspiration and continental drying. Nat Clim Chang 6(10):946–949

    Article  Google Scholar 

  • Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN, Scott RL, Wang L, Phillips RP (2016) The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Chang 6(11):1023–1027

    Article  Google Scholar 

  • Peng J, Dan L, Dong WJ (2014) Are there interactive effects of physiological and radiative forcing produced by increased CO2 concentration on changes of land hydrological cycle? Glob Planet Chang 112:64–78

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci U S A 104(39):15242–15247

    Article  Google Scholar 

  • Piao S, Yin G, Tan J, Cheng L, Huang M, Li Y, Liu R, Mao J, Myneni RB, Peng S, Poulter B, Shi X, Xiao Z, Zeng N, Zeng ZZ, Wang Y (2015) Detection and attribution of vegetation greening trend in China over the last 30 years. Glob Chang Biol 21(4):1601–1609

    Article  Google Scholar 

  • Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J et al (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509(7502):600–603

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD (2014) Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat Geosci 7(12):920–924

    Article  Google Scholar 

  • Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO et al (1996) Comparison of radiative and physiological effects of doubled atmospheric CO_2 on climate. Science 271(5):1402–1406

    Article  Google Scholar 

  • Swann ALS, Hoffman FM, Koven CD, Randerson JT (2016) Plant responses to increasing CO 2 reduce estimates of climate impacts on arid severity. Proc Natl Acad Sci 113(36):10019–10024

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Trancoso R, Larsen JR, McVicar TR, Phinn SR, McAlpine CA (2017) CO2-vegetation feedbacks and other climate changes implicated in reducing base flow. Geophys Res Lett 44(5):2310–2318

    Google Scholar 

  • Ukkola AM, Prentice IC, Keenan TF, van Dijk AIJM, Viney NR, Myneni RB, Bi J (2015) Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat Clim Chang 6(1):75–78

    Article  Google Scholar 

  • Ukkola AM, Keenan TF, Kelley DI, Prentice IC (2016) Vegetation plays an important role in mediating future water resources. Environ Res Lett 11(9):94022

    Article  Google Scholar 

  • UNEP (United Nations Environment Programme) World Atlas of Desertification 182(Edward Arnold, 1997)

  • University of East Anglia Climatic Research Unit, Harris, I.C, Jones, P.D. (2017): CRU TS4.00: climatic research unit (CRU) time-series (TS) version 4.00 of high resolution gridded data of month-by-month variation in climate (Jan. 1901-Dec. 2015). Centre for Environmental Data Analysis. https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0

  • Yang H, Piao S, Zeng Z, Ciais P, Yin Y, Friedlingstein P, Wang L (2015) Multicriteria evaluation of discharge simulation in dynamic global vegetation models. J Geophys Res Atmos 120:7488–7505

    Article  Google Scholar 

  • Yang Y, Guan H, Batelaan O, McVicar TR, Long D, Piao S, Simmons CT (2016a) Contrasting responses of water use efficiency to arid across global terrestrial ecosystems. Sci Rep 6(1):23284

    Article  Google Scholar 

  • Yang Y, Donohue RJ, McVicar TR, Roderick ML, Beck HE (2016b) Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. J Geophys Res Biogeosci 121:2125–2140

    Article  Google Scholar 

  • Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Zeng N (2016) Greening of the earth and its drivers. Nat Clim Chang 6(8):791–795

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Key Research and Development Program of China Grant (2016YFA0602703), the Key Program of the National Natural Science Foundation of China (Grant No. 41330527), the National Natural Science Foundation of China (41605036), the National-Level Major Cultivation Project of Guangdong Province (2014GKXM058), and the China Postdoctoral Fund (No.2016M591108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Dong.

Electronic supplementary material

ESM 1

(DOCX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, T., Dong, W., Ji, D. et al. The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle. Theor Appl Climatol 136, 135–144 (2019). https://doi.org/10.1007/s00704-018-2476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2476-7

Navigation