Inter-reanalysis differences of the temperature trends in the MERRA-2.0 and ERA-Interim: comparison of the middle and lower atmosphere

  • Khalil Karami
Original Paper


Studying the long-term temperature variations and trends helps to understand the role of human activities in climate change. We present the temperature trends (calculated by the linear regression method) in the Northern hemisphere in all seasons for the period of 1980–2016 for the ERA-Interim and MERRA-2.0 reanalyses. The temperature trends are analyzed for the six standard post-processed pressure levels (850, 500, and 250 hPa for the troposphere and 70, 10, and 2 hPa for the stratosphere). In addition, we calculate the non-parametric Mann-Kendall test to detect the statistically significant temperature trends in different pressure levels and seasons. It is found that both reanalyses have a negative temperature trend (cooling) in the stratosphere, and the magnitude of the cooling rates increases with increasing height. While the largest cooling trend (by considering all pressure levels and seasons) occurs in the autumn for the MERRA-2.0 (− 0.167 K/year), the largest cooling trend is in winter for the ERA-Interim (− 0.118 K/year). Furthermore, the results of the MANN-Kendall test reveal considerable differences in terms of statistically significant temperature changes between two reanalyses at 10 hPa where the cooling trends are statistically significant at 99% level in all seasons in MERRA-2.0 reanalysis while the temperature changes are only significant at 99% level in autumn in ERA-Interim. In general, the magnitude of the cooling trends in the middle and upper stratosphere is higher for the MERRA-2.0 than ERA-Interim. Positive temperature trends (warming) are found for the bulk of troposphere, though the magnitude of the temperature changes over the study period is higher in the lower troposphere (at 850 hPa at 99% confidence level) for both reanalyses. The largest warming rates are found during autumn season where the magnitude of the temperature changes are + 0.031 (K/year) and + 0.033 (K/year) for the MERRA-2.0 and ERA-Interim, respectively. Our results suggest a high level of uncertainty in the temperature trends in the middle and upper stratosphere and a reasonable agreement between ERA-Interim and MERRA-2.0 warming trend in the troposphere. We also briefly discuss the role of different sources of uncertainty of the temperature trends in the middle and upper stratosphere.



  1. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584CrossRefGoogle Scholar
  2. Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophy. Res 104-30:937–946Google Scholar
  3. Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings, part I: climatology and modelling benchmarks. J Clim 20:449–469. CrossRefGoogle Scholar
  4. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteor Soc 137:553–597. CrossRefGoogle Scholar
  5. Fujiwara M, Polavarapu S, Jackson D (2012) A proposal of the SPARC Reanalysis/Analysis Intercomparison Project, SPARC. Newsletter 38:14–17Google Scholar
  6. Fujiwara M, Wright JS, Manney GL, Gray LJ, Anstey J, Birner T, Davis S, Gerber EP, Harvey VL, Hegglin MI, Homeyer CR, Knox JA, Krüger K, Lambert A, Long CS, Martineau P, Molod A, Monge-Sanz BM, Santee ML, Tegtmeier S, Chabrillat S, Tan DGH, Jackson DR, Polavarapu S, Compo GP, Dragani R, Ebisuzaki W, Harada Y, Kobayashi C, McCarty W, Onogi K, Pawson S, Simmons A, Wargan K, Whitaker JS, Zou C-Z (2017) Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos Chem Phys 17:1417–1452. CrossRefGoogle Scholar
  7. Gelaro R, McCarty W, Suarez M, Todling R, Molod A, Takacs L, Randles C, Darmenov A, Bosilovich M, Reichle R, Wargan K, Coy L, Cullather R, Draper C, Akella S, Buchard V, Conaty A, Da Silva A, Gu W, Kim G, Koster R, Lucchesi R, Merkova D, Nielsen J, Partyka G, Pawson S, Putman W, Rienecker M, Schubert S, Sienkiewicz M, Zhao B (2017) The modern-Efa retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30:5419–5454. CrossRefGoogle Scholar
  8. Hansen J, Sato M, Ruedy R, Lacis A, Asamoah K, Beckford K, Borenstein S, Brown E, Cairns B, Carlson B, Curran B, de Castro S, Druyan L, Etwarrow P, Ferede T, Fox M, Gaffen D, Glascoe J, Gordon H, Hollandsworth S, Jiang X, Johnson C, Lawrence N, Lean J, Lerner J, Lo K, Logan J, Luckett A, McCormick MP, McPeters R, Miller R, Minnis P, Ramberran I, Russell G, Russell P, Stone P, Tegen I, Thomas S, Thomason L, Thompson A, Wilder J, Willson R, Zawodny J (1997) Forcings and chaos in interannual to decadal climate change. J Geophys Res 102:25679–25720CrossRefGoogle Scholar
  9. Jaagus J (2006) Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theor Appl Climatol 83:77–88CrossRefGoogle Scholar
  10. Karami K, Braesicke P, Sinnhuber M, Versick S (2016) On the climatological probability of the vertical propagation of stationary planetary waves. Atmos Chem Phys 16:8447–8460.
  11. Karami K, Braesicke P, Kunze M, Langematz U, Sinnhuber M, Versick S (2015) Modelled thermal and dynamical responses of the middle atmosphere to EPP-induced ozone changes. Atmos Chem Phys Discuss 15:33283–33329. CrossRefGoogle Scholar
  12. Keckhut P, McDermid S, Swart D, McGee T, Godin-Beekmann S, Adriani A, Barnes J, Baray JL, Bencherif H, Claude H, di Sarra AG, Fiocco G, Hansen G, Hauchecorne A, Leblanc T, Lee CH, Pal S, Megie G, Nakane H, Neuber R, Steinbrecht W, Thayer J (2004) Review of ozone and temperature lidar validations performed within the framework of the network for the detection of stratospheric change. J Environ Monit 6:721–733CrossRefGoogle Scholar
  13. Kendall MG (1975) Rank correlation methods, 202 pp., Charles Griffin, LondonGoogle Scholar
  14. Lanzante J, Klein S, Seidel DJ (2003) Temporal homogenization of monthly radiosonde temperature data. Part II: trends, sensitivities and MSU comparisons. J Clim 16:241–262CrossRefGoogle Scholar
  15. Lindzen RS, Batten ES, Kim JW (1968) Oscillations in atmospheres with tops. Mon Weather Rev 96:133–140CrossRefGoogle Scholar
  16. Long CS, Fujiwara M, Davis S, Mitchell DM, Wright CJ (2017) Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos Chem Phys 17:14593–14629. CrossRefGoogle Scholar
  17. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  18. Manney GL, Allen DR, Kruger K, Naujokat B, Santee ML, Sabutis JL, Pawson S, Swinbank R, Randall CE, Simmons AJ, Long C (2005) Diagnostic comparison of meteorological analyses during the 2002 Antarctic winter. Mon Weather Rev 133:1261–1278. CrossRefGoogle Scholar
  19. Martineau P, Son S-W, Taguchi M (2016) Dynamical consistency of reanalysis datasets in the extratropical stratosphere. J Clim 29:3057–3074.
  20. Miyazaki K, Iwasaki T, Kawatani Y, Kobayashi C, Sugawara S, Hegglin M (2016) Inter-comparison of stratospheric mean-meridional circulation and eddy mixing among six reanalysis datasets. Atmos Chem Phys 16:6131–6152. CrossRefGoogle Scholar
  21. Modarres R, da Silva VPR (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70:344–355CrossRefGoogle Scholar
  22. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432. CrossRefGoogle Scholar
  23. Pawson S, Fiorino M (1998a) A comparison of reanalyses in the tropical stratosphere: part 1: thermal structure and the annual cycle. Clim. Dynam. 14:631–644CrossRefGoogle Scholar
  24. Pawson S, Fiorino M (1998b) A comparison of reanalyses in the tropical stratosphere: part 2: the quasi-biennial oscillation. Clim Dynam 14:645–658CrossRefGoogle Scholar
  25. Pawson S, Fiorino M (1999) A comparison of reanalyses in the tropical stratosphere: part 3: inclusion of the pre-satellite data era. Clim. Dynam. 15:241–250CrossRefGoogle Scholar
  26. Ramaswamy V, Chanin ML, Angell J, Barnett J, Gaffen D, Gelman M, Keckhut P, Koshelkov Y, Labitzke K, Lin JJR, O’Neill A, Nash J, Randel W, Rood R, Shine K, Shiotani M, Swinbank R (2001) Stratospheric temperature trends: observations and model simulations. Rev Geophys 39:71–122CrossRefGoogle Scholar
  27. Randel WJ et al (2009) An update of observed stratospheric temperature trends. J Geophys Res 114:D02107CrossRefGoogle Scholar
  28. Seidel DJ, Gillett NP, Lanzante JR, Shine KP, Thorne PW (2011) Stratospheric temperature trends: our evolving understanding. Wiley Interdisc Rev Clim Change 2:592–616CrossRefGoogle Scholar
  29. Shepherd TG, Shaw TA (2004) The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J Atmos Sci 61:2899–2908CrossRefGoogle Scholar
  30. Shepherd TG, Semeniuk K, Koshyk JN (1996) Sponge layer feedbacks in middle-atmosphere models. J Geophys Res 101:23447–23464CrossRefGoogle Scholar
  31. Simmons AJ, Poli P, Dee DP, Berrisford P, Hersbach H, Kobayashi S, Peubey C (2014) Estimating low frequency variability and trends in atmospheric temperature using ERA-Interim. Q J R Meteorol Soc 140:329–353. CrossRefGoogle Scholar
  32. Thompson DWJ, Seidel DJ, Randel WJ, Zou C-Z, Butler AH, Mears C, Osso A, Long C, Lin R (2012) The mystery of recent stratospheric temperature trends. Nature 491:692–697. CrossRefGoogle Scholar
  33. Tripathi OP, Baldwin M, Charlton A, Charron M, Eckermann SD, Gerber E, Harrison G, Jackson DR, Kim B-M, Kuroda Y, Lang A, Mahmood S, Mizuta R, Roff G, Sigmondk M, Son S-W (2014) The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Q J R Meteorol Soc 141:987–1003CrossRefGoogle Scholar
  34. Wang W, Chen X, Shi P, Van Gelder PHAJM (2008) Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China. Hydrol Earth Syst Sci 12:207–221CrossRefGoogle Scholar
  35. Zhang Q, Xu C-Y, Chen YD, Ren L (2011) Comparison of evapotranspiration variations between the Yellow River and Pearl River basin. China Stoch Environ Res Risk Assess 25:139–150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Water Research InstituteMinistry of EnergyTehranIran

Personalised recommendations