Skip to main content

Advertisement

Log in

Soil response to long-term projections of extreme temperature and precipitation in the southern La Plata Basin

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Projected changes were estimated considering the main variables which take part in soil-atmosphere interaction. The analysis was focused on the potential impact of these changes on soil hydric condition under extreme precipitation and evapotranspiration, using the combination of Global Climate Models (GCMs) and observational data. The region of study is the southern La Plata Basin that covers part of Argentine territory, where rainfed agriculture production is one of the most important economic activities. Monthly precipitation and maximum and minimum temperatures were used from high quality-controlled observed data from 46 meteorological stations and the ensemble of seven CMIP5 GCMs in two periods: 1970–2005 and 2065–2100. Projected changes in monthly effective temperature and precipitation were analysed. These changes were combined with observed series for each probabilistic interval. The result was used as input variables for the water balance model in order to obtain consequent soil hydric condition (deficit or excess). Effective temperature and precipitation are expected to increase according to the projections of GCMs, with few exceptions. The analysis revealed increase (decrease) in the prevalence of evapotranspiration over precipitation, during spring (winter). Projections for autumn months show precipitation higher than potential evapotranspiration more frequently. Under dry extremes, the analysis revealed higher projected deficit conditions, impacting on crop development. On the other hand, under wet extremes, excess would reach higher values only in particular months. During December, projected increase in temperatures reduces the impact of extreme high precipitation but favours deficit conditions, affecting flower-fructification stage of summer crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Accadia C, Mariani S, Casaioli M, Lavagnini A, Speranza A (2003) Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neightbor average method on high-resolution verification grids. Weather Forecast 18(5):918–932. https://doi.org/10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2

    Article  Google Scholar 

  • Barros V, Vera C, Agosta E, Araneo D, Camilloni I, Carril A, Doyle M, Frumento O, Nuñez M, Ortiz de Zárate M, Penalba O, Rusticucci M, Saulo C, Solman S (2013) Cambio climático en Argentina, tendencias y proyecciones. Tercera Comunicación de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Buenos Aires, Argentina, Secretaria de Ambiente y Desarrollo Sustentable de la Nación, p. 341

  • Blázquez J, Nuñez MN (2012) Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim Dyn 41(3–4):1039–1056. https://doi.org/10.1007/s00382-012-1489-7

    Article  Google Scholar 

  • Blázquez J, Núñez M, Kusunoki S (2012) Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos Clim Sc 2(04):381–400. https://doi.org/10.4236/acs.2012.24034

    Article  Google Scholar 

  • Camargo AP, Marin FR, Sentelhas PC, Giarola Piccini A (1999) Ajuste de equação de Thornthwaite para estimar la evapotranspiracão em climas arido y superhumedo, com base na amplitude térmica diaria. Rev Bras Agrometeorología 7(2):251–257

    Google Scholar 

  • Carvalho L, Jones C (2013) Multiannual-to-decadal variability of the American monsoons: present climate and CMIP5 projections. U.S. Clivar Variations 11, No. 1

  • Cavalcanti IFA, Carril AF, Penalba OC, Grimm AM, Menéndez CG, Sanchez E, Cherchi A, Sörensson A, Robledo F, Rivera J, Pántano V, Bettolli LM, Zaninelli P, Zamboni L, Tedeschi RG, Dominguez M, Ruscica R, Flach R (2015) Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations. J Hydrol 523:211–230. https://doi.org/10.1016/j.jhydrol.2015.01.028

    Article  Google Scholar 

  • Costa A, González MH, Nuñez MN (2013) Cambios esperados en la disponibilidad hídrica del suelo en Argentina. Meteor-Forschung 38(1):43–52

    Google Scholar 

  • Eltahir EA (1998) A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour Res 34(4):765–776. https://doi.org/10.1029/97WR03499

    Article  Google Scholar 

  • Forte Lay JA, Spescha L (2001) Método para la estimación de la climatología del agua edáfica en las provincias pampeanas de la Argentina. Rev Arg Agrometeorología 1(1):67–74

    Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. https://doi.org/10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • IPCC (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007 (eds: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL) Cambridge University Press, United Kingdom and New York, USA

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (eds: Core Writing Team, Pachauri RK, Meyer LA). Geneva, Switzerland, 151 pp.

  • Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Chang 119(2):345–357. https://doi.org/10.1007/s10584-013-0705-8

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758. https://doi.org/10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40(6):1194–1199. https://doi.org/10.1002/grl.50256

    Article  Google Scholar 

  • Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3(4):369–373. https://doi.org/10.1038/nclimate1716

    Article  Google Scholar 

  • Menendez C, Zaninelli P, Carril A, Sánchez E (2016) Hydrological cycle, temperature, and land surface−atmosphere interaction in the La Plata Basin during summer: response to climate change. Clim Res 68(2-3):231–241. https://doi.org/10.3354/cr01373

    Article  Google Scholar 

  • Murgida A, Travasso M, González S, Rodríguez G (2014) Evaluación de impactos del cambio climático sobre la producción agrícola en la Argentina. Publicación de las Naciones Unidas

  • Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: regional and seasonal dimension. Clim Chang 110(3–4):669–696. https://doi.org/10.1007/s10584-011-0122-9

    Article  Google Scholar 

  • Pántano V (2016) Sensibilidad de la interacción suelo-atmósfera a los extremos de temperatura y precipitación en el sudeste de Sudamérica. Unpublished doctoral Thesis. University of Buenos Aires, Buenos Aires

  • Pántano V, Penalba O, Spescha L, Murphy G (2017) Assessing how accumulated precipitation and long dry sequences impact the soil water storage. Int J Climatol 37(12):4316–4326. https://doi.org/10.1002/joc.5087

    Article  Google Scholar 

  • Pántano V, Spescha L, Penalba O, Murphy G (2014) Influencia de la variabilidad de la temperatura y la precipitaciónen el agua del suelo, en la región oriental de secano de Argentina. Meteor-Forschung 39:21–36

    Google Scholar 

  • Pascale JY, Damario EA (1977) El Balance Hidrológico Seriado y su utilización en estudios agroclimáticos. Rev. Fac. Agron. La Plata (3a época) 53 (1–2): 15–34

  • Pascale JY, Damario EA (2004) Bioclimatología agrícola y agroclimatología. FAUBA Pags:327–360

  • Penalba O, Rivera J (2013) Future changes in drought characteristics over southern South America projected by a CMIP5 ensemble. Am J Clim Chang 2(3):173–182. https://doi.org/10.4236/ajcc.2013.23017

    Article  Google Scholar 

  • Penalba O, Rivera J (2015) Comparación de seis índices para el monitoreo de sequías meteorológicas en el sur de Sudamérica. Meteor-Forschung 40:33–57

    Google Scholar 

  • Penalba OC, Rivera JA, Pántano VC (2014) The CLARIS LPB database: constructing a long-term daily hydrometeorological dataset for La Plata Basin, southern South America. Geosci Data J 1(1):20−29–20−29. https://doi.org/10.1002/gdj3.7

    Article  Google Scholar 

  • Penalba OC, Rivera JA, Pántano VC, Bettolli ML (2016) Extreme rainfall, hydric conditions and associated atmospheric circulation in the southern La Plata Basin. Clim Res 68(2-3):215–229. https://doi.org/10.3354/cr01353

    Article  Google Scholar 

  • Pessacg N, Solman S (2012) Effects of land-use changes on climate in southern South America. Clim Res 55(1):33–51. https://doi.org/10.3354/cr01119

    Article  Google Scholar 

  • Rind D, Goldberg R, Hansen J, Rosenzweig C, Ruedy R (1990) Potential evapotranspiration and the likelihood of future drought. J Geophys Res: Atmos 95(D7):9983–10004. https://doi.org/10.1029/JD095iD07p09983

    Article  Google Scholar 

  • Ruscica RC, Sörensson AA, Menéndez CG (2014) Hydrological links in southeastern South America: soil moisture memory and coupling within a hot spot. Int J Climatol 34(14):3641–3653. https://doi.org/10.1002/joc.3930

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling A (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3):125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Solman S, Pessacg N (2012) Evaluating uncertainties in regional climate simulations over SouthAmerica at the seasonal scale. Clim Dyn 39(1–2):59–76. https://doi.org/10.1007/s00382-011-1219-6

    Article  Google Scholar 

  • Sörensson AA, Menéndez CG (2011) Summer soil–precipitation coupling in South America. Tellus A 63(1):56–68. https://doi.org/10.1111/j.1600-0870.2010.00468.x

    Article  Google Scholar 

  • Spescha LB, Murphy GM, Forte Lay JA, Hurtado RH, Scarpati OE (2005) Riesgo de sequía en la Región Pampeana. Rev. Arg. de Agrometeorología (5-6): 53-61

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geog Review 38(1):55–94. https://doi.org/10.2307/210739

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and water balance. Drexel Institute of technology. Publications in Climatology. Vol. X (3): 185-311

Download references

Acknowledgements

The authors thank the responsible editor and the reviewers for their valuable suggestions that improved the manuscript.

Funding

This research was supported by the projects UBACyT (2014-17) 20020130100263BA from the University of Buenos Aires and CONICET 11220150100137CO (2016-2018) from the National Council of Scientific and Technical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanesa C. Pántano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pántano, V.C., Penalba, O.C. Soil response to long-term projections of extreme temperature and precipitation in the southern La Plata Basin. Theor Appl Climatol 134, 1257–1268 (2018). https://doi.org/10.1007/s00704-017-2339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2339-7

Navigation