Theoretical and Applied Climatology

, Volume 134, Issue 3–4, pp 1153–1163 | Cite as

Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932–2010

  • H. Abahous
  • J. Ronchail
  • A. Sifeddine
  • L. Kenny
  • L. Bouchaou
Original Paper


In the context of an arid area such as Souss Massa Region, the availability of time series analysis of observed local data is vital to better characterize the regional rainfall configuration. In this paper, dataset of monthly precipitation collected from different local meteorological stations during 1932–2010, are quality controlled and analyzed to detect trend and change points. The temporal distribution of outliers shows an annual cycle and a decrease of their number since the 1980s. The results of the standard normal homogeneity test, penalized maximal t test, and Mann-Whitney-Pettit test show that 42% of the series are homogeneous. The analysis of annual precipitation in the region of Souss Massa during 1932–2010 shows wet conditions with a maximum between 1963 and 1965 followed by a decrease since 1973. The latter is identified as a statistically significant regional change point in Western High Atlas and Anti Atlas Mountains highlighting a decline in long-term average precipitation.



This work was carried out within the tripartite cooperation (Africa-Latin America-Europe) on climate changes and their impacts on natural resources. The first author is grateful to IRD for the mobility and training in LOCEAN. We thank the ABHSMD for providing the data. This study benefited also from the support of the ERANETMED (WASA) project.


  1. ABHSM (2007) Agence du Bassin Hydraulique de Souss Massa. Volume 2: Ressources en eau de surface. Etude de révision du Plan Directeur d’Aménagement Intégré des Ressources en Eau (PDAIRE) des bassins du Souss Massa.Google Scholar
  2. Ait Brahim Y, Seif-Ennasr M, Malki M, N’da B, Choukrallah R, Sifeddine A, El Morjani ZA, Abahous H, Bouchaou L (2016) Assessment of climate and land use changes: impacts on groundwater resources in the Souss Massa River basin. In: Choukr-Allah R, Ragab R, Bouchaou L, Barcelo D (eds) The handbook of environmental chemistry. Springer, Berlin, pp 1–22Google Scholar
  3. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Clim 6(6):661–675. CrossRefGoogle Scholar
  4. Bouchaou L, Tagma T, Boutaleb S, Hssaisoune M, El Morjani Z (2011) Climate change and its impacts on groundwater resources in Morocco: the case of the Souss Massa basin. In: Treidel H, Martin-Bordes JL (eds) International Contributions to Hydrogeology: Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations, IAH Book series, 27, Chap 8. CRC press Taylor & Francis group, Boca Raton, pp 129–144 pp: 414Google Scholar
  5. Caussinus H, Lyazrhi F (1997) Choosing a linear model with a random number of change-points and outliers. Ann I Stat Math 49:761–775CrossRefGoogle Scholar
  6. Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc Ser C 53(part 3):405–425CrossRefGoogle Scholar
  7. Chbouki N, Stockston CW, Meyers DE (1995) Spatio-temporal patterns of drought in Morocco. Int J Climatol 15:1987–1205CrossRefGoogle Scholar
  8. Combe M, El Hebil A (1977) Vallée du Souss, in Ressources en eau du Maroc, Tome III. Domaines atlasique et sud atlasique. Notes et Mémoires du Service Géologique Maroc 231:169–201Google Scholar
  9. Della-Marta PM, Warner H (2006) A method for homogenizing the extremes and mean of daily temperature measurements. J Clim 19(17):4179–4197. CrossRefGoogle Scholar
  10. Domonkos P, Poza R, Efthymiadis D (2011) Newest development of ACMANT. Adv Sci Res 6:7–11. CrossRefGoogle Scholar
  11. Eischeid J, Baker CB, Karl T, Diaz HF (1995) The quality control of long-term climatological data using objective data analysis. J Appl Meteorol 34(12):2787–2795.<2787:TQCOLT>2.0.CO;2 CrossRefGoogle Scholar
  12. Guijarro JA (2011) Climatol Version 2.0, an R contributed package for homogenisation of climatological series. State Meteorological Agency, Balearic Islands Office, Spain Google Scholar
  13. HOME (2011) Homepage of the COST Action ES0601—advances in homogenisation methods of climate series: an integrated approach (HOME).
  14. Karrouk MS (2007) Climate change and its impacts in Morocco. In: Mellouki A, Ravishankara AR (eds) Regional climate variability and its impacts in the Mediterranean area, NATO Science Series: IV: Earth and Environmental Sciences, vol 79. Springer, DordrechtCrossRefGoogle Scholar
  15. Karrouk MS (2011) Dynamique des climats du Maroc: Genèses, Évolutions et Développement des Phénomènes, Espaces, et Milieux Climatiques. ÉDITIONS UNIVERSITAIRES EUROPÉENNES, Südwestdeutscher Verlag für Hochschulschriften GmbH & Co. KG, SarrebruckGoogle Scholar
  16. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration of time scales. Eighth conference on applied climatology, American meteorological society, January 17–23, 1993, Anaheim, CA, pp 179–186Google Scholar
  17. Mestre O, Domonkos P, Picard F, Auer I, Stephane R, Lebarbier E, Böhm R, Aguilar E, Guijarro J, Vertachnik G, Klancar M, Dubuisson B, Stepanek P (2013) HOMER: a homogenization software—methods and applications. Q J Hung Meteorol Serv 117(1):47–67Google Scholar
  18. Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18(13):1493–1517.<1493::AID-JOC329>3.0.CO;2-T CrossRefGoogle Scholar
  19. Pettit AN (1979) A non-parametric approach to the change-point problem. J R Stat Soc Ser C 28:126–135Google Scholar
  20. Picard F, Lebarbier E, Hoebeke M, Rigaill G, Thiam B, Robin S (2011) Joint segmentation, calling, and normalization of multiple CGH profiles. Biostatistics 12(3):413–428. CrossRefGoogle Scholar
  21. Ribeiro S, Caineta J, Costa AC (2015) Review and discussion of homogenisation methods for climate data. J. Phys Chem Earth 94:167–179. CrossRefGoogle Scholar
  22. Seif-Ennasr M, Zaaboul R, Hirich A, Caroletti GN, Bouchaou L, el Morjani ZEA, Beraaouz EH, McDonnell RA, Choukr-Allah R (2016) Climate change and adaptive water management measures in Chtouka Aït Baha region (Morocco). Sci Total Environ 573:862–875. CrossRefGoogle Scholar
  23. Štěpánek P (2008) AnClim-software for time series analysis: Dept. of Geography, Fac. of Natural Sciences, MU, Brno
  24. Štěpánek P (2010) ProClimDB–software for processing climatological datasets. CHMI, Regional Office Brno Google Scholar
  25. Štěpánek P, Zahradníček P, Skalák P (2009) Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007. Adv Sci Res 3:23–26. CrossRefGoogle Scholar
  26. Wang XL, Wen QH, Wu Y (2007) Penalized maximal t test for detecting undocumented mean change in climate data series. Appl J Meteor Climatol 46(6):916–931. CrossRefGoogle Scholar
  27. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large scale dynamics and trends. Clim Dynam 23(1):63–78. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • H. Abahous
    • 1
  • J. Ronchail
    • 2
  • A. Sifeddine
    • 3
    • 4
  • L. Kenny
    • 5
  • L. Bouchaou
    • 1
  1. 1.Laboratoire de Géologie Appliquée et de Géo-Environnement, Faculté des Sciences d’AgadirUniversité Ibn ZohrAgadirMorocco
  2. 2.Université Paris 7-Denis Diderot, UMR LOCEANParisFrance
  3. 3.Centre IRD France NordIRD-Sorbonne Université (IRD, UPMC, CNRS, MNHN) UMR LOCEANBondy-CedexFrance
  4. 4.LMI PALEOTRACES (IRD, UPMC, CNRS, MNHN), Departamento de GeoquimicaUFFNiteroiBrazil
  5. 5.IAV Hassan IIAit MelloulMorocco

Personalised recommendations