The impact of climate change on air conditioning requirements in Andalusia at a detailed scale

  • Natalia Limones-Rodríguez
  • Javier Marzo-Artigas
  • María Fernanda Pita-López
  • María Pilar Díaz-Cuevas
Original Paper

Abstract

This work calculates the current heating and cooling degree days and also examines heating and cooling degree days in relation to three subdivisions of the twenty-first century. On the basis of these data, we were able to calculate the heating and cooling degree months and degree years. After examining both sets of data, we studied the total needs of air conditioning—also referred to in the current paper as climatization needs——for Andalusia as a whole. The results indicate an increase in air conditioning needs, and we also noted that the areas adversely affected by this increase were more numerous than those which benefited, at the end of the century. It should be noted that climate change will also necessitate the gradual replacement of heating with cooling, which will require profound changes in the energy, land planning, and housing policies of the region. The true magnitude of the challenge becomes clear when the climatization degree days are related to the population which they affect; the majority of the population is located in areas where the climatization needs will increase over the course of the century. Undoubtedly, this issue is a major protagonist in the climate change adaptation process in Andalusia.

Notes

Acknowledgements

We are grateful to AEMET and to the Environment Agency of the Government of Andalusia for providing us with the observation climate data and the future projection climate data, respectively.

References

  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. WCDMP-no. 53, WMO-TD no. 1186. World Meteorological Organization, GenevaGoogle Scholar
  2. Alexandersson H, Moberg A (1997) Homogenization of Swedish temperature data. Part I: homogeneity test for lineal trends. Int J Climatol 17(1):25–34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J CrossRefGoogle Scholar
  3. Allen RJ, DeGaetano AT (2001) Estimating missing daily temperature extremes using an optimized regression approach. Int J Climatol 21(11):1305–1319. https://doi.org/10.1002/joc.679 CrossRefGoogle Scholar
  4. Álvarez JI (2011) Espacialización de la temperatura media mensual en Andalucía mediante técnicas estadísticas y SIG. Servicio de Publicaciones de la Universidad de Sevilla, SevilleGoogle Scholar
  5. Amato AD, Ruth M, Kirshen P, Horwitz J (2005) Regional energy demand responses to climate change: methodology and application to the common wealth of Massachusetts. Clim Chang 71(1-2):175–201. https://doi.org/10.1007/s10584-005-5931-2 CrossRefGoogle Scholar
  6. Auffhammer M, Aroonruengsawat A (2011) Simulating the impacts of climate change, prices and population on California’s residential electricity consumption. Clim Chang 109(1):191–210. https://doi.org/10.1007/s10584-011-0299-y CrossRefGoogle Scholar
  7. Benestad R (2008) Heating degree days, cooling degree days, and precipitation in Europe: analysis for the CELECT-project. Report for Norwegian met. Institute (available online at http://met.no/Forskning/Publikasjoner/metno_report/2008/filestore/metno_04-2008pdf)
  8. Büyükalaca O, Bulut H, Yılmaz T (2001) Analysis of variable-base heating and cooling degree-days for Turkey. Appl Energy 69(4):269–283. https://doi.org/10.1016/S0306-2619(01)00017-4 CrossRefGoogle Scholar
  9. Climent F, Valor E, Torró H, Caselles V (2003) Incidencia de la Climatología en el consumo de gas y electricidad en España. Información Comercial Española, ICE: Revista de economía 808:55–70Google Scholar
  10. Correa E, De Rosa C, Lesino G (2005) Efecto sobre la distribución de los grados-día de calefacción y refrigeración en el área metropolitana del Gran Mendoza. Informe del avance Avances en Energías Renovables y Medio Ambiente 9:11.31–11.36Google Scholar
  11. Cvitan L, Jurković RS (2016) Secular trends in monthly heating and cooling demands in Croatia. Theor Appl Climatol 125(3-4):565–581. https://doi.org/10.1007/s00704-015-1534-7 CrossRefGoogle Scholar
  12. Giannakopoulos C, Hadjinicolau P, Zeferos C, Demosthenous G (2009) Changing energy requirements in the Mediterranean under changing climatic conditions. Energy 2(4):805–815. https://doi.org/10.3390/en20400805 Google Scholar
  13. Ginzburg AS, Reshetar OA, Belova N (2016) Impact of climatic factors on energy consumption during the heating season. Therm Eng 63(9):621–627. https://doi.org/10.1134/S0040601516080061 CrossRefGoogle Scholar
  14. Gutiérrez E (2003) La demanda residencial de energía eléctrica en Andalucía: un análisis cuantitativo. Dissertation, University of SevilleGoogle Scholar
  15. Hamlet A, Lee SE, Mickelson K, Elsner M (2010) Effects of projected climate change on energy supply and demand in the Pacific northwest and Washington state. Clim Chang 102(1):103–128. https://doi.org/10.1007/s10584-010-9857-y CrossRefGoogle Scholar
  16. Hu S, Yan D, Cui Y, Guo S (2016) Urban residential heating in hot summer and cold winter zones of China—status, modeling and scenarios to 2030. Energy Policy 92:158–170. https://doi.org/10.1016/j.enpol.2016.01.032 CrossRefGoogle Scholar
  17. Huang J, Gurney K (2016) Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution. Clim Change (137):171–185. https://doi.org/10.1007/s10584-016-1681-6
  18. Ibáñez M, Rosell JI (2001) Interpolación espacial de la temperatura del aire incorporando imágenes AVHRR. In: Martínez A, Rossel JI (eds) Teledetección, Medio Ambiente y Cambio Global. Universidad de Lleida, Barcelona, pp 405–408Google Scholar
  19. IEA, International Energy Agency (2008) Energy efficiency requirements in building codes, energy efficiency policies for new buildings. https://www.iea.org/publications/freepublications/publication/Building_Codes.pdf. Accessed 12 Feb 2017
  20. IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University press, Cambridge; New YorkGoogle Scholar
  21. Jiang F, Li X, Wei B, Hu R, Li Z (2009) Observed trends of heating and cooling degree-days in Xinjiang Province, China. Theor Appl Climatol 97(3-4):349–360. https://doi.org/10.1007/s00704-008-0078-5 CrossRefGoogle Scholar
  22. Justicia A, Domínguez R (1992) Notas metodológicas para la cumplimentación de series climáticas y extrapolación de datos. Su aplicación al mapa de temperaturas de Andalucía. Baetica: Estudios de arte, geografía e historia 14:56–80Google Scholar
  23. Kadioglu M, Sen Z (1999) Degree-day formulations and application in Turkey. J Appl Meteorol 38(6):837–846. https://doi.org/10.1175/1520-0450(1999)038<0837:DDFAAI>2.0.CO;2 CrossRefGoogle Scholar
  24. Kadioglu M, Sen Z, Gültekin L (2001) Variations and trends in Turkish seasonal heating and cooling degree-days. Clim Chang 49(1/2):209–223. https://doi.org/10.1023/A:1010637209766 CrossRefGoogle Scholar
  25. Katsoulakos N, Kaliampakos D (2014) What is the impact of altitude on energy demand? A step towards developing specialized energy policy for mountainous areas. Energy Policy 71:130–138. https://doi.org/10.1016/j.enpol.2014.04.003 CrossRefGoogle Scholar
  26. Labriet M, Joshi S, Vielle M, Holden PB, Edwards NR, Kanudia A, Loulou R, Babonneau F (2015) Worldwide impacts of climate change on energy for heating and cooling. Mitig Adapt Strateg Glob Chang 20(7):1111–1136. https://doi.org/10.1007/s11027-013-9522-7 CrossRefGoogle Scholar
  27. Lam J (1998) Climatic and economic influences on residential electricity consumption. Energ Convers Manag 39(7):623–629. https://doi.org/10.1016/S0196-8904(97)10008-5 CrossRefGoogle Scholar
  28. Lemonsu A, Viguié V, Daniel M, Masson V (2015) Vulnerability to heat waves: impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate 14(4):586–605. https://doi.org/10.1016/j.uclim.2015.10.007 CrossRefGoogle Scholar
  29. Matzarakis A, Balafoutis C (2004) Heating degree-days over Greece as an index of energy consumption. Int J Climatol 24(14):1817–1828. https://doi.org/10.1002/joc.1107 CrossRefGoogle Scholar
  30. Memon RA, Leung DYC, Liu CH (2011) Urban heat island and its effect on the cooling and heating demands in urban and suburban areas of Hong Kong. Theor Appl Climatol 103(3-4):441–450. https://doi.org/10.1007/s00704-010-0310-y CrossRefGoogle Scholar
  31. Mima S, Criqui P (2015) The costs of climate change for the European energy system, an assessment with the POLES model. Environ Model Assess 20(4):303–319. https://doi.org/10.1007/s10666-015-9449-3 CrossRefGoogle Scholar
  32. Mos RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JF, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–763. https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  33. Moustris KP, Nastos TN, Bartzokas A, Larissi J, Zacharia P, Pialatsos A (2015) Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece. Theor Appl Climatol 122(3):517–529. https://doi.org/10.1007/s00704-014-1308-7 CrossRefGoogle Scholar
  34. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BellaterraGoogle Scholar
  35. Ortiz MJ, Sánchez-López G, Álvarez-García FJ, Ruiz de Elvira A (2012) Evolution of heating and cooling degree-days in Spain: trends and interannual variability. Glob Planet Chang 92:236–247. https://doi.org/10.1016/j.gloplacha.2012.05.023 Google Scholar
  36. Rehman S, Al-Hadhrami LM, Khan S (2011) Annual and seasonal trends of cooling, heating, and industrial degree-days in coastal regions of Saudi Arabia. Theor Appl Climatol 104(3–4):479–488. https://doi.org/10.1007/s00704-010-0359-7 CrossRefGoogle Scholar
  37. Ribalaygua J, Torres L, Pórtoles J, Monjo R, Gaitán E, Pino MR (2013) Description and validation of a two-step analog/regression downscaling method. Theor Appl Climatol 114(1–2):253–269. https://doi.org/10.1007/s00704-013-0836-x CrossRefGoogle Scholar
  38. Sailor D, Muñoz R (1997) Sensitivity of electricity and natural gas consumption to climate in the U.S.A: methodology and results for eight states. Energy 22(10):987–998. https://doi.org/10.1016/S0360-5442(97)00034-0 CrossRefGoogle Scholar
  39. Sailor DJ, Pavlova AA (2003) Air conditioning market saturation and long-term response of residential cooling energy demand to climate change. Energy 28(9):941–951. https://doi.org/10.1016/S0360-5442(03)00033-1 CrossRefGoogle Scholar
  40. Sánchez de la Flor FJ, Álvarez S (2004) Modelling microclimate in urban environments and assessing its influence on the performance of surrounding buildings. Energy Build 36(5):403–413. https://doi.org/10.1016/j.enbuild.2004.01.050 CrossRefGoogle Scholar
  41. Semmler T, McGrath R, Steeler-Dunne S, Hanafin J, Nolan P, Wang S (2010) Influence of climate change in heating and cooling energy demand in Ireland. Int J Climatol 30(10):1502–1511. https://doi.org/10.1002/joc.1997 Google Scholar
  42. Valor E, Meneu V, Caselles V (2001) Daily air temperature and electricity load in Spain. J Appl Meteorol 40(8):413–1421. https://doi.org/10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2 CrossRefGoogle Scholar
  43. van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Chang 122(3):415–429. https://doi.org/10.1007/s10584-013-0974-2 CrossRefGoogle Scholar
  44. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard AK, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109(1-2):5–31. https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  45. Vicente-Serrano SM, Beguería S, López-Moreno JI, García-Vera MA, Stepanek P (2010) A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. Int J Climatol 30(8):1146–1163. https://doi.org/10.1002/joc.1850 CrossRefGoogle Scholar
  46. Vogt JV, Viau AA, Paquet F (1997) Mapping regional air temperature fields using satellite-derived surface skin temperatures. Int J Climatol 17(14):1559–1579. https://doi.org/10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5 CrossRefGoogle Scholar
  47. Wang H, Chen Q (2014) Impact of climate change heating and cooling energy use in buildings in the United States. Energy Build 82:428–436. https://doi.org/10.1016/j.enbuild.2015.06.007 CrossRefGoogle Scholar
  48. Yildiz I, Sosaoglu B (2007) Spatial distributions of heating, cooling, and industrial degree-days in Turkey. Theor Appl Climatol 90(3-4):249–261. https://doi.org/10.1007/s00704-006-0281- CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Natalia Limones-Rodríguez
    • 1
  • Javier Marzo-Artigas
    • 2
  • María Fernanda Pita-López
    • 2
  • María Pilar Díaz-Cuevas
    • 2
  1. 1.World BankWashingtonUSA
  2. 2.Department of Physical GeographyUniversity of SevilleSevilleSpain

Personalised recommendations