Advertisement

Theoretical and Applied Climatology

, Volume 133, Issue 3–4, pp 1249–1268 | Cite as

Comparison of extreme precipitation characteristics between the Ore Mountains and the Vosges Mountains (Europe)

  • Jana Minářová
  • Miloslav Müller
  • Alain Clappier
  • Marek Kašpar
Original Paper
  • 132 Downloads

Abstract

Understanding the characteristics of extreme precipitation events (EPEs) not only helps in mitigating the hazards associated with it but will also reduce the risks by improved planning based on the detailed information, and provide basis for better engineering decisions which can withstand the recurring and likely more frequent events predicted in future in the context of global climate change. In this study, extremity, temporal and spatial characteristics, and synoptic situation of the 54 EPEs that occurred during 1960–2013 were compared between two low mountain ranges situated in Central Europe: the Ore Mountains (OM) and Vosges Mountains (VG). The EPEs were defined using the Weather Extremity Index, which quantifies the extremity, duration, and spatial extent of events. Comparative analysis of EPE characteristics showed that in both regions the EPEs were mostly short (lasted 1–2 days) and their seasonal occurrence significantly depended on the synoptic situation and duration of EPEs; the low was related to summer short EPEs, while zonal circulation to winter long EPEs. The EPEs were generally related to lows in OM and to troughs in VG. The lows often moved to OM from the Mediterranean area, i.e. along the Vb track. However, five EPEs in VG occurred during a low with Vb track significantly deflected westwards. The EPEs in VG affected smaller area as compared to that in OM. The comparison of EPEs between the two low mountain ranges is first of its kind and contributes to the understanding of EPE characteristics in the regions.

Notes

Acknowledgements

We thank Météo-France, DWD (Deutscher Wetterdienst), and CHMI (Czech Hydrometeorological Survey) for provided precipitation data, and NCEP/NCAR re-analysed gridded data of synoptic variables. We extend great thanks to the BGF (French Government scholarship) and DBU (Deutsche Bundesstiftung Umwelt), and project CRREAT (reg. number: CZ.02.1.01/0.0/0.0/15_003/0000481) call number 02_15_003 of the Operational Programme Research, Development and Education for financially supporting the research for 15 and 6 months, respectively. We also thank M.Phil. Syed Muntazir Abbas for his valuable remarks during the revision of the manuscript and the language corrections.

References

  1. Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmospheres 111:D05109. doi: 10.1029/2005JD006290
  2. Alsatia (1932) L’Alsace: précis de la géographie régionale des départements Haut-Rhin et Bas-Rhin. Alsatia, ColmarGoogle Scholar
  3. Awan NK, Formayer H (2016) Cutoff low systems and their relevance to large-scale extreme precipitation in the European Alps. Theor Appl Climatol:1–10. doi: 10.1007/s00704-016-1767-0
  4. Barry RG (2008) Mountain weather and climate third edition, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Bartholy J, Pongracz R (2005) Tendencies of extreme climate indices based on daily precipitation in the Carpathian Basin for the 20th century. Idojárás 109:1–20Google Scholar
  6. Bartholy J, Pongrácz R (2007) Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Glob Planet Change 57:83–95. doi: 10.1016/j.gloplacha.2006.11.002 CrossRefGoogle Scholar
  7. Baulig H (1950) Les inondations de décembre 1947Google Scholar
  8. Beniston M, Stephenson DB (2004) Extreme climatic events and their evolution under changing climatic conditions. Glob Planet Change 44:1–9. doi: 10.1016/j.gloplacha.2004.06.001 CrossRefGoogle Scholar
  9. Bernhofer C, Surke M (2009) Das Klima in der REGKLAM-Modellregion Dresden. Leibniz-Institut für Ökologische Raumentwicklung (eds). Rhombos-Verl, BerlinGoogle Scholar
  10. Bosshard T, Kotlarski S, Zappa M, Schär C (2013) Hydrological climate-impact projections for the Rhine River: GCM–RCM uncertainty and separate temperature and precipitation effects. J Hydrometeorol 15:697–713. doi: 10.1175/JHM-D-12-098.1 CrossRefGoogle Scholar
  11. Boucek J (2007) August 2002 catastrophic flood in the Czech Republic. In: Vasiliev OF, VanGelder P, Plate EJ, Bolgov MV (eds) Extreme hydrological events: new concepts for security. Springer, Dordrecht, pp 59–68CrossRefGoogle Scholar
  12. Brádka J (1963) O srážkovém stínu za Krušnými horami. Meteorol Zprávy 16:26–28Google Scholar
  13. Brázdil R (2002) Meteorologické extrémy a povodně v České republice - přirozený trend nebo následek globálního oteplování?Google Scholar
  14. Brázdil R, Dobrovolný P, Elleder L, et al (2005) Historické a současné povodně v České republice. Masarykova univerzita v Brně, Český hydrometeorologický ústav v PrazeGoogle Scholar
  15. Brazdil R, Kotyza O, Dobrovolny P (2006) July 1432 and August 2002—two millennial floods in Bohemia? Hydrol Sci J-J Sci Hydrol 51:848–863. doi: 10.1623/hysj.51.5.848 CrossRefGoogle Scholar
  16. Chamas V, Kakos V (1988) Mimořádná průtrž mračen a povodeň na Jílovském potoce dne 1. 7. 1987. Sborník Českoslov Geogr Spol 93:265–278Google Scholar
  17. Conradt T, Roers M, Schröter K et al (2013) Comparison of the extreme floods of 2002 and 2013 in the German part of the Elbe River basin and their runoff simulation by SWIM-live. Hydrol Wasserbewirtsch 57:241–245. doi: 10.5675/HyWa-2013,5-4 Google Scholar
  18. Cramér H (1946) Mathematical methods of statistics. Princeton University Press, PrincetonGoogle Scholar
  19. DWD DDR, HMÚ ČSSR (1975) Podnebí a počasí v Krušných horách. SNTL - Nakladatelství technické literatury, PrahaGoogle Scholar
  20. Ernst F (1988) Panorama de la géographie physique de l’Alsace; et Les régions naturelles de l’AlsaceGoogle Scholar
  21. Fink A, Ulbrich U, Engel H (1996) Aspects of the January 1995 flood in Germany. Weather 51:34–39. doi: 10.1002/j.1477-8696.1996.tb06182.x CrossRefGoogle Scholar
  22. Foresti L, Pozdnoukhov A (2012) Exploration of alpine orographic precipitation patterns with radar image processing and clustering techniques. Meteorol Appl 19:407–419. doi: 10.1002/met.272 CrossRefGoogle Scholar
  23. Franke J, Goldberg V, Eichelmann U et al (2004) Statistical analysis of regional climate trends in Saxony, Germany. Clim Res 27:145–150. doi: 10.3354/cr027145 CrossRefGoogle Scholar
  24. Gley G (1867) Géographie physique, industrielle, administrative et historique des Vosges, 3rd edn. V.e Gley Impr. V.e & Durand Libraire, ÉpinalGoogle Scholar
  25. Grams CM, Binder H, Pfahl S et al (2014) Atmospheric processes triggering the central European floods in June 2013. Nat Hazards Earth Syst Sci 14:1691–1702. doi: 10.5194/nhess-14-1691-2014 CrossRefGoogle Scholar
  26. Greenwood PE, Nikulin MS (1996) A guide to chi-squared testing. Wiley, New YorkGoogle Scholar
  27. Hänsel S, Schucknecht A, Böttcher F, et al (2015) Niederschlagsveränderungen in Sachsen von 1901 bis 2100 Starkniederschlags- und Trockenheitstrends. Selbstverlag des Deutchen Wetterdienstes, Offenbach am MainGoogle Scholar
  28. Heidenreich M, Bernhofer C (eds) (2011) Klimaprojektionen für die REGKLAM-Modellregion Dresden. Rhombos Verl, BerlinGoogle Scholar
  29. Hirsch F (1972) Bassin représentatif de la Bruche: Intensité des pluies dans le bassin, une méthode d’analyse. Société Météorologique Fr 443–456Google Scholar
  30. Hladný J, Barbořík J (1967) Studie krátkodobých hydrologických předpovědí v povodí Ohře. Sborník HMÚ 1:1–38Google Scholar
  31. Hofstätter M, Chimani B, Lexer A, Blöschl G (2016) A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resour Res n/a-n/a doi:  10.1002/2016WR019146
  32. Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University PressGoogle Scholar
  33. Houze RA (2014) Cloud dynamics. Academic PressGoogle Scholar
  34. Hoy A, Jaagus J, Sepp M, Matschullat J (2012a) Spatial response of two European atmospheric circulation classifications (data 1901–2010). Theor Appl Climatol 112:73–88. doi: 10.1007/s00704-012-0707-x CrossRefGoogle Scholar
  35. Hoy A, Sepp M, Matschullat J (2012b) Atmospheric circulation variability in Europe and northern Asia (1901 to 2010). Theor Appl Climatol 113:105–126. doi: 10.1007/s00704-012-0770-3 CrossRefGoogle Scholar
  36. INTERKLIM (2014) Der Klimawandel im böhmisch-sächsischen Grenzraum. Změna klimatu v česko-saském pohraničí. Sächsisches Landesamt für Umwelt, DresdenGoogle Scholar
  37. Kakos V (1975) Meteorologické příčiny povodní v první polovině prosince 1974Google Scholar
  38. Kakos V (1977) Meteorologické příčiny povodní v oblasti Krušných horGoogle Scholar
  39. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  40. Kašpar M, Müller M (2014) Combinations of large-scale circulation anomalies conducive to precipitation extremes in the Czech Republic. Atmospheric Res 138:205–212. doi: 10.1016/j.atmosres.2013.11.014 CrossRefGoogle Scholar
  41. Kienzler S, Pech I, Kreibich H et al (2015) After the extreme flood in 2002: changes in preparedness, response and recovery of flood-affected residents in Germany between 2005 and 2011. Nat Hazards Earth Syst Sci 15:505–526. doi: 10.5194/nhess-15-505-2015 CrossRefGoogle Scholar
  42. Küchler W, Sommer W (2005) Klimawandel in Sachsen: Sachstand und Ausblick. Sächsisches Staatsministerium für Umwelt und Landwirtschaft, DresdenGoogle Scholar
  43. Kynčil J (1983) Povodně v Krušných horách a jejich podhůří v letech 1784-1981: Příspěvek k dějinám čes. hydrologie. Povodí Ohře, podnik pro provoz a využití vodních tokůGoogle Scholar
  44. Kynčil J, Lůžek B (1979) Historické povodně v povodí Bíliny a Ohře. Povodí OhřeGoogle Scholar
  45. Kyselý J (2009) Trends in heavy precipitation in the Czech Republic over 1961–2005. Int J Climatol 29:1745–1758. doi: 10.1002/joc.1784 CrossRefGoogle Scholar
  46. Kyselý J, Picek J (2007) Regional growth curves and improved design value estimates of extreme precipitation events in the Czech Republic. Clim Res 33:243–255. doi: 10.3354/cr033243 CrossRefGoogle Scholar
  47. Labbouz L, Van Baelen J, Tridon F et al (2013) Precipitation on the lee side of the Vosges Mountains: multi-instrumental study of one case from the COPS campaign. Meteorol Z 22:413–432. doi: 10.1127/0941-2948/2013/0413 CrossRefGoogle Scholar
  48. Maire G (1979) Analyse des fortes pluies de 1h à 48h: Bassin de l’Ill, région Alsace. Ministère de l’agriculture, Université Louis Pasteur, StrasbourgGoogle Scholar
  49. Merz B, Elmer F, Kunz M et al (2014) The extreme flood in June 2013 in Germany. Houille Blanche:5–10. doi: 10.1051/lhb/2014001
  50. Météo-France (2008) Climatologie des Vosges. Météo-France au service des Vosges: le centre dépertemental d’Épinal, ÉpinalGoogle Scholar
  51. Minářová J, Müller M, Clappier A, et al (2017b) Duration, rarity, affected area, and weather types associated with extreme precipitation in the Ore Mountains (Erzgebirge) region, Central Europe Press: doi: 10.1002/joc.5100
  52. Minářová J, Müller M, Clappier A (2017c) Seasonality of mean and heavy precipitation in the area of the Vosges Mountains: dependence on the selection criterion. Int J Climatol 37:2654–2666. doi: 10.1002/joc.4871 CrossRefGoogle Scholar
  53. Minářová J, Müller M, Clappier A (2017d) Seasonality of mean and heavy precipitation in the area of the Vosges Mountains: dependence on the selection criterion. Int J Climatol 37:2654–2666. doi: 10.1002/joc.4871 CrossRefGoogle Scholar
  54. Minářová J, Müller M, Clappier A, Kašpar M (2017a) Characteristics of extreme precipitation in the Vosges Mountains region (north-eastern France). Presstime doi:  10.1002/joc.5102
  55. Müller M, Kaspar M (2014) Event-adjusted evaluation of weather and climate extremes. Nat Hazards Earth Syst Sci 14:473–483. doi: 10.5194/nhess-14-473-2014 CrossRefGoogle Scholar
  56. Müller M, Kašpar M (2010) Quantitative aspect in circulation type classifications—an example based on evaluation of moisture flux anomalies. Phys Chem Earth Parts ABC 35:484–490. doi: 10.1016/j.pce.2009.09.004 CrossRefGoogle Scholar
  57. Müller M, Kašpar M, Řezáčová D, Sokol Z (2009) Extremeness of meteorological variables as an indicator of extreme precipitation events. Atmospheric Res 92:308–317. doi: 10.1016/j.atmosres.2009.01.010 CrossRefGoogle Scholar
  58. Munzar J, Auer I, Ondráček S (2011) Central European one-day precipitation record. Moravian Geographical Reports 64:107–112Google Scholar
  59. Oliver JE (2008) Encyclopedia of world climatology. Springer Science & Business MediaGoogle Scholar
  60. Pachauri RK, Allen MR, Barros VR et al (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  61. Parlow E (1996) The regional climate project REKLIP—an overview. Theor Appl Climatol 53:3–7. doi: 10.1007/BF00866406 CrossRefGoogle Scholar
  62. Paul P, Roussel I (1985) Les précipitations exceptionnelles d’avril et mai 1983 à l’origine des fortes crues en Alsace et en LorraineGoogle Scholar
  63. Pechala F, Böhme W (eds) (1975) Podnebí a počasí v Krušných horách, 1. vyd. SNTL, PrahaGoogle Scholar
  64. Pelt SC van, Beersma JJ, Buishand TA et al (2014) Uncertainty in the future change of extreme precipitation over the Rhine basin: the role of internal climate variability. Clim Dyn 44:1789–1800. doi: 10.1007/s00382-014-2312-4
  65. Planche C, Wobrock W, Flossmann AI et al (2013) Small scale topography influence on the formation of three convective systems observed during COPS over the Vosges Mountains. Meteorol Z 22:395–411. doi: 10.1127/0941-2948/2013/0402 CrossRefGoogle Scholar
  66. Prudhomme C, Reed DW (1998) Relationships between extreme daily precipitation and topography in a mountainous region: a case study in Scotland. Int J Climatol 18:1439–1453. doi: 10.1002/(SICI)1097-0088(19981115)18:13<1439::AID-JOC320>3.0.CO;2-7 CrossRefGoogle Scholar
  67. REKLIP (1995) Klimaatlas Oberhein Mitte-Süd: REKLIP. Regio-Klima-Projeckt. Vdf Hochschulverl, ZürichGoogle Scholar
  68. Roe GH, Montgomery DR, Hallet B (2003) Orographic precipitation and the relief of mountain ranges. J Geophys Res Solid Earth 108:n/a–n/a. doi:  10.1029/2001JB001521
  69. Rudolf B, Rapp J (2002) Das Jahrhunderthochwasser der Elbe: Synoptische Wetterentwicklung und klimatologische Aspekte. DWD Klimastatusbericht 172–187Google Scholar
  70. Schiller J (2016) Eine Sensitivitätsanalyse des Weather Extremity Index (WEI) nach Müller und Kaspar zur Beschreibung extremer Niederschläge unter Verwendung radarbasierter Niederschlagsmessungen des Deutschen Wetterdienstes. University of CologneGoogle Scholar
  71. Schröter K, Kunz M, Elmer F et al (2015) What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol Earth Syst Sci 19:309–327. doi: 10.5194/hess-19-309-2015 CrossRefGoogle Scholar
  72. Sell Y (1998) L’Alsace et les Vosges. Delachaux et Niestlé, LausanneGoogle Scholar
  73. Šercl P (2008) Hodnocení metod odhadu plošných srážek (Assessment of methods for area precipitation estimates). Meteorol Zprávy Meteorol Bull 61:33–43Google Scholar
  74. Smith RB (2006) Progress on the theory of orographic precipitation. Spec Pap 398:1–16Google Scholar
  75. SMUL (2008) Sachsen im Klimawandel - Eine Analyse. Sächsisches Staatsministerium für Umwelt und Landwirtschaft, DresdenGoogle Scholar
  76. Socher M, Boehme-Korn G (2008) Central European floods 2002: lessons learned in Saxony. J Flood Risk Manag 1:123–129. doi: 10.1111/j.1753-318X.2008.00014.x CrossRefGoogle Scholar
  77. Söder M, Conrad M, Gönner T, Kusch W (2009) Les changements climatiques en Allemagne du Sud: Ampleur – Conséquences – Stratégies. Klimaveränderung und Konsequenzen für die Wasserwirtschaft (KLIWA), MainzGoogle Scholar
  78. Solomon S, Quin D, Manning M, et al (2007) Climate change 2007—the physical science basis: Working Group I contribution to the Fourth Assessment Report of the IPCC, IPCC. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  79. Stein C, Malitz G (2013) Das Hochwasser an Elbe und Donau im Juni 2013Google Scholar
  80. Štekl J, Brázdil R, Kakos V et al (2001) Extrémní denní srážkové úhrny na území ČR v období 1879–2000 a jejich synoptické příčiny, 1st edn. Národní klimatický program České republiky, PrahaGoogle Scholar
  81. Thieken AH, Kreibich H, Mueller M, Merz B (2007) Coping with floods: preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrol Sci J-J Sci Hydrol 52:1016–1037. doi: 10.1623/hysj.52.5.1016 CrossRefGoogle Scholar
  82. Thieken AH, Muller M, Kreibich H, Merz B (2005) Flood damage and influencing factors: new insights from the August 2002 flood in Germany. Water Resour Res 41:W12430. doi: 10.1029/2005WR004177 CrossRefGoogle Scholar
  83. Tolasz R, Brázdil R, Bulíř O, et al (2007) Altas podnebí Česka/Climate atlas of Czechia, 1st edn. Český hydrometeorologický ústav, Universita PalackéhoGoogle Scholar
  84. Ulbrich U, Brücher T, Fink AH et al (2003) The central European floods of August 2002: part 1—rainfall periods and flood development. Weather 58:371–377. doi: 10.1256/wea.61.03A CrossRefGoogle Scholar
  85. Uppala SM, KÅllberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  86. van Bebber WJ (1891) Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890Google Scholar
  87. Van der Schrier, G, van den Besselaar E, Leander R, et al (2013) Central European flooding 2013—Euro4m CIBGoogle Scholar
  88. van Meijgaard E, Jilderda R (1996) The Meuse flood in January 1995. Weather 51:39–45. doi: 10.1002/j.1477-8696.1996.tb06183.x CrossRefGoogle Scholar
  89. Vautard R (2013) Des projections climatiques d’une précision inégalée sur toute l’Europe. http://www.insu.cnrs.fr/node/4634. Accessed 10 Feb 2014
  90. Wang XL, Chen H, Wu Y et al (2010) New techniques for the detection and adjustment of shifts in daily precipitation data series. J Appl Meteorol Climatol 49:2416–2436. doi: 10.1175/2010JAMC2376.1 CrossRefGoogle Scholar
  91. Wang XL, Feng Y (2013) RHtests_dlyPrcp user manual. Clim Res Div Atmospheric Sci Technol Dir Sci Technol Branch Environ Can Tor Ont Can Retrieved Febr 25:2014Google Scholar
  92. Werner PC, Gerstengarbe F-W (2010) PIK Report No. 119—Katalog Der Grosswetterlagen Europas nach Paul Hess und Helmut Brezowsky 7., verbesserte und ergänzte AuflageGoogle Scholar
  93. Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University PressGoogle Scholar
  94. World Meteorological Organization (2008) Guide to meteorological instruments and methods of observation. World Meteorological Organization, GenevaGoogle Scholar
  95. Zolina O (2014) Multidecadal trends in the duration of wet spells and associated intensity of precipitation as revealed by a very dense observational German network. Environ Res Lett 9:025003. doi: 10.1088/1748-9326/9/2/025003 CrossRefGoogle Scholar
  96. Zolina O, Simmer C, Belyaev K et al (2013) Changes in the duration of European wet and dry spells during the last 60 years. J Clim 26:2022–2047. doi: 10.1175/JCLI-D-11-00498.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Laboratory Image, City, EnvironmentNational Centre for Scientific Research & University of Strasbourg (3 rue de l’Argonne, F-67000, Strasbourg)StrasbourgFrance
  2. 2.Department of Physical Geography and Geoecology, Faculty of ScienceCharles University in Prague (Albertov 6, 128 43 Praha 2)PragueCzech Republic
  3. 3.Institute of Atmospheric PhysicsAcademy of Sciences of the Czech Republic (Boční II 1401, 141 31 Praha 4)PragueCzech Republic

Personalised recommendations