Theoretical and Applied Climatology

, Volume 133, Issue 3–4, pp 1061–1074 | Cite as

Analysis of meteorological droughts and dry spells in semiarid regions: a comparative analysis of probability distribution functions in the Segura Basin (SE Spain)

Original Paper


Dry spells are an essential concept of drought climatology that clearly defines the semiarid Mediterranean environment and whose consequences are a defining feature for an ecosystem, so vulnerable with regard to water. The present study was conducted to characterize rainfall drought in the Segura River basin located in eastern Spain, marked by the self seasonal nature of these latitudes. A daily precipitation set has been utilized for 29 weather stations during a period of 20 years (1993–2013). Furthermore, four sets of dry spell length (complete series, monthly maximum, seasonal maximum, and annual maximum) are used and simulated for all the weather stations with the following probability distribution functions: Burr, Dagum, error, generalized extreme value, generalized logistic, generalized Pareto, Gumbel Max, inverse Gaussian, Johnson SB, Log-Logistic, Log-Pearson 3, Triangular, Weibull, and Wakeby. Only the series of annual maximum spell offer a good adjustment for all the weather stations, thereby gaining the role of Wakeby as the best result, with a p value means of 0.9424 for the Kolmogorov-Smirnov test (0.2 significance level). Probability of dry spell duration for return periods of 2, 5, 10, and 25 years maps reveal the northeast-southeast gradient, increasing periods with annual rainfall of less than 0.1 mm in the eastern third of the basin, in the proximity of the Mediterranean slope.


  1. Anagnostopoulou CHR, Maheras P, Karacostas T, Vafiadis M (2003) Spatial and temporal analysis of dry spells in Greece. Theor Appl Climatol 74:77–91CrossRefGoogle Scholar
  2. Bedient PB, Huber WC (2008) Hydrology and floodplain analysis. Prentice-Hall Publishing Co., Upper Saddle RiverGoogle Scholar
  3. Beran MA, Rodier JA (1985) Hydrological aspects of drought: a contribution to the international hydrological programme. Studies and reports on Hidrology 39:149Google Scholar
  4. Berger A, Goossens C (1983) Persistence of wet and dry spells at Uccle (Belgium). J Clim 3:21–24CrossRefGoogle Scholar
  5. Burton I, Kates RW, White GF (1978) The environment as hazard. Oxford University Press, New YorkGoogle Scholar
  6. Caloeiro T, Coscarelli R, Ferrari E, Sirangelo B (2015) Analysis of dry spells in Southern Italy (Calabria). Water 7(6):3009–3023. doi: 10.3390/w7063009 CrossRefGoogle Scholar
  7. Chakravarti L, Laha RG, Roy J (1967) Handbook of methods of applied statistics. John Wiley and Sons, New YorkGoogle Scholar
  8. Chowdhury RK, Beecham S (2013) Characterization of rainfall spells for urban water management. Int J Climatol 33(4):959–967CrossRefGoogle Scholar
  9. Cindrić K, Pasarić Z, Gajić-Čapka M (2010) Spatial and temporal analysis of dry spells in Croatia. Theor Appl Climatol 102:171–184CrossRefGoogle Scholar
  10. Conesa C, Martín-Vide J (1993) Analyse par la chaîne de Markov de la sécheresse dans le sud-est de l’Espagne. Sécheresse 4(2):123–129Google Scholar
  11. Dobi-Wantuck I, Mika J, Szeidl L (2000) Modelling wet and dry spells with mixture distributions. Met Atmos Phys 73:245–256CrossRefGoogle Scholar
  12. Douguédroit A (1980) La sécheresse estivale dans la région Provence—Alpes—Côtes d’Azur. Méditerranée 2–3:13–22Google Scholar
  13. Douguédroit A A (1987) The variations of dry spells in Marseilles from 1865 to 1984. J Int J Climatol 7:541–551Google Scholar
  14. Douguédroit A (1991) Drought in the French Mediterranean area (1864–1990). In: fifth conference on climate variations (14–18 October 1991, Colorado, USA), 181–184Google Scholar
  15. Galán E (1991) Tipos de tiempo anticiclónicos invernales en la España peninsular y Baleares: ensayo metodológico. Madrid Edictiones, Universidad Autónoma de MadridGoogle Scholar
  16. Galloy E, Martin S, Le Breton A (1982) Analyse de séquences de jours secs consécutifs. Application à 31 postes du réseau météorologique français. La Météorologie 28:5–24Google Scholar
  17. García R (2008) Riesgo de sequía y vulnerabilidad socioeconómica en la Cuenca del Guadalentín. Dissertation, University of MurciaGoogle Scholar
  18. Gibbs WJ, Maher JV (1967) Rainfall deciles as drought indicators. Bureau of Meteorology Bulletin 48, Commonwealth of Australia, MelbourneGoogle Scholar
  19. Gómez L (1997) Regionalización climática de la España Peninsular mediante el análisis Markoviano de las sequías. Dissertation, University of BarcelonaGoogle Scholar
  20. Gómez Navarro M (1996) Calcul par les chaînes de Markov des probabilités de durée des séquences sèches et pluvieuses à l’Espagne. Association Internationale de Climatologie (AIC) 9: 203–209Google Scholar
  21. Kutiel H, Trigo RM (2014) The rainfall regime in Lisbon in the last 150 years. Theor Appl Climatol 118:387–403CrossRefGoogle Scholar
  22. Kutiel H, Hirsch-Eshkol TR, Türkes M (2001) Sea level pressure patterns associated with dry or wet monthly rainfall conditions in Turkey. Theor Appl Climatol 69:39–67CrossRefGoogle Scholar
  23. Lana X, Burgueño A (1998) Daily dry-wet behaviour in Catalonia (NE Spain) from the viewpoint of first and second order Markov chains. Int J Climatol 18(7):793–815CrossRefGoogle Scholar
  24. Lana X, Martinez MD, Burgueño A, Serra C, Martín-Vide J, Gómez L (2006) Distributions of long dry spells in the Iberian peninsula years 1951-1990. Barcelona. Int J Climatol 26:1999–2021CrossRefGoogle Scholar
  25. Lana X, Martinez MD, Burgueño A, Serra C (2008a) Return period maps of dry spells for Catalonia based on Weibull distribution. Hydrol Sci J 53:48–64CrossRefGoogle Scholar
  26. Lana X, Martínez MD, Burgueño A, Serra C, Martín-Vide J, Gómez L (2008b) Spatial and temporal patterns of dry spell lengths in the Iberian peninsula for the second half of the twentieth century. Theor Appl Climatol 91:99–116CrossRefGoogle Scholar
  27. Lana X, Burgueño A, Martinez MD, Serra C (2012) Some characteristics of a daily rainfall deficit regime based on the dry day since last rain index (DDSLR). Theor Appl Climatol 109:153–174CrossRefGoogle Scholar
  28. Le Goff Y (1985) Variabilité interannuelle des précipitations au Maroc (1913–1985), Etude de la DMN in Sedrati M et Ettalibi M (éd), Sécheresse, gestion des eaux et production alimentaire, Actes de la conférence d’Agadir du 21–24 novembre 1985, pp 37–51Google Scholar
  29. López F (1973) La Vega Alta del Segura. Clima, Hidrología y Geomorfología. Dep. Geografia. Univ. Murcia. 288 ppGoogle Scholar
  30. Luengo MA, Ceballos A, Martínez J, Yuste C (2002) Las rachas secas en el sector central de la Cuenca del Duero. Investigaciones Geográficas 27:65–82CrossRefGoogle Scholar
  31. Martín-Vide J, Gómez L (1999) Regionalization of peninsular Spain based on the length of dry spells. Int J Climatol 19:537–555CrossRefGoogle Scholar
  32. Martín-Vide J, Conesa C, Moreno MC (1992) Acerca de la bondad de las cadenas de Markov de primero, segundo y tercer órdenes en el análisis de las sequías del sureste de España. Actas del V Coloquio de Geografía cuantitativa, Zaragoza, pp 485–500Google Scholar
  33. MathWave (2015) EasyFit Software. Accessed 4 Nov 2015
  34. Meddi H, Meddi M, Assani AA (2014) Study of drought in seven Algerian Plains. Arab J Sci Eng 39:339–359CrossRefGoogle Scholar
  35. Meko DM (1988) Temporal and spatial variation of drought in Morocco, in Proceedings, drought, water management and Food Production, Agadir, Morocco, 21–24 November 1985. Imprimerie de Fedala, Mohammedia, 55–82Google Scholar
  36. Melesse A, Abtew W, Dessalegne T, Wang XX (2010) Low and high flow analysis and wavelet application for characterization of the Blue Nile River system. Hydrol Process 24:241–252Google Scholar
  37. Mishra AK, Singh VP (2011) Drought modeling—a review. J Hydrol 403 (1-2):157–175CrossRefGoogle Scholar
  38. Mitchell B (1971) A comparison of chi-square and Kolmogorov-Smirnov tests. Area 3:237–241Google Scholar
  39. Niu J, Chen J, Sun L (2015) Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in South China. J Hydrol 526:68–77CrossRefGoogle Scholar
  40. Nobilis F (1986) Dry spells in the alpine country Austria. J Hydrol 88:235–251CrossRefGoogle Scholar
  41. Ochola WO, Kerkides P (2003) A Markov chain simulation model for predicting critical wet and dry spells in Kenya: analysing rainfall events in the Kano Plains. Irrig Drain 52:327–342CrossRefGoogle Scholar
  42. Pérez-Manrique C, Garmendia MI, Seco J, Garmendia J (1984) Estudio de rachas secas y lluviosas en Gijón y San Sebastián. Revista de Geofísica 40:73–80Google Scholar
  43. Pita MF (1989) La sequía como desastre natural: su incidencia en el ámbito español. Norba 6-7. Servicio de Publicaciones de la Universidad de Extremadura, Cáceres, pp 31–61Google Scholar
  44. Reiser H, Kutiel H, (2009) Rainfall uncertainty in the Mediterranean: definitions of the daily rainfall threshold (DRT) and the rainy season length (RSL). Theoretical and Applied Climatology 97 (1-2):151-162Google Scholar
  45. Serra C, Martínez MD, Lana X, Burgueño A (2013) European dry spell length distributions, years 1951–2000. Theor Appl Climatol 114:531–551. doi: 10.1007/s00704-013-0857-5 CrossRefGoogle Scholar
  46. She DX, Xia J, Song J, Du H, Chen J, Wan L (2013) Spatio-temporal variation and statistical characteristics of extreme dry spell in Yellow River Basin, China. Theor Appl Climatol 112:201–213CrossRefGoogle Scholar
  47. She DX, Xia J, Zhang D, Ye AZ, Sood A (2014) Regional extreme-dry-spell frequency analysis using the L-moments method in the middle reaches of the Yellow River Basin, China. Pekín. Hydrol Process 28(17):4694–4707CrossRefGoogle Scholar
  48. Snedecor GW, Cochran WG (1989) Statistical methods. Iowa State University Press, IowaGoogle Scholar
  49. Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Amer Statist Assoc 69:730–737CrossRefGoogle Scholar
  50. Tennant WJ, Hewitson BC (2002) Intra-seasonal rainfall characteristics and their importance to the seasonal prediction problem. Int J Climatol 22:1033–1048CrossRefGoogle Scholar
  51. Vargas WM, Naumann G, Minetti JL (2010) Dry spells in the river Plata Basin: an approximation of the diagnosis of droughts using daily data. Theor Appl Climatol. doi: 10.1007/s00704-010-0335-2 ISSN 0177-798X
  52. Vicente-Serrano SM, Beguería-Portugués S (2003) Estimating extreme dry-spell risk in the midlle Ebro valley (northeastern Spain): a comparative analysis osf partial duration series with a general pareto distribution and annual maxima series with a Gumbel distribution. Int J Climatol 23:1103–1118Google Scholar
  53. Von Neumann J (1941) Distribution of the ratio of the mean square successive difference to the variance. Ann Math Stat 13:367–395CrossRefGoogle Scholar
  54. Wijngaard JB, Klein-Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692. doi: 10.1002/joc.906 CrossRefGoogle Scholar
  55. Wilhite DA (2000) Drought: a global assessment. Volume I. Routledge, New York, pp 3–18Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of Polytechnic ScienceUniversity of Polytechnic Science, UCAM University of San Antonio of Murcia, Campus los JerónimosMurciaSpain

Personalised recommendations