Advertisement

Theoretical and Applied Climatology

, Volume 133, Issue 3–4, pp 829–849 | Cite as

High-resolution long-term WRF climate simulations over Volta Basin. Part 1: validation analysis for temperature and precipitation

  • Thompson Annor
  • Benjamin Lamptey
  • Sven Wagner
  • Philip Oguntunde
  • Joël Arnault
  • Dominikus Heinzeller
  • Harald Kunstmann
Original Paper

Abstract

A 26-year simulation (1980–2005) was performed with the Weather Research and Forecast (WRF) model over the Volta Basin in West Africa. This was to investigate the ability of a climate version of WRF to reproduce present day temperature and precipitation over the Volta Basin. The ERA-Interim reanalysis and one realization of the ECHAM6 global circulation model (GCM) data were dynamically downscaled using two nested domains within the WRF model. The outer domain had a horizontal resolution of 50 km and covered the whole of West Africa while the inner domain had a horizontal resolution of 10 km. It was observed that biases in the respective forcing data were carried over to the RCM, but also the RCM itself contributed to the mean bias of the model. Also, the biases in the 50-km domain were transferred unchanged, especially in the case of temperature, to the 10-km domain, but, for precipitation, the higher-resolution simulations increased the mean bias in some cases. While in general, WRF underestimated temperature in both the outer (mean biases of −1.6 and −2.3 K for ERA-Interim and ECHAM6, respectively) and the inner (mean biases of −0.9 K for the reanalysis and −1.8 K for the GCM) domains, WRF slightly underestimated precipitation in the coarser domain but overestimated precipitation in the finer domain over the Volta Basin. The performance of the GCM, in general, is good, particularly for temperature with mean bias of −0.7 K over the outer domain. However, for precipitation, the added value of the RCM cannot be overlooked, especially over the whole West African region on the annual time scale (mean biases of −3% for WRF and −8% for ECHAM6). Over the whole Volta Basin and the Soudano-Sahel for the month of April and spring (MAM) rainfall, respectively, mean bias close to 0% was simulated. Biases in the interannual variability in both temperature and precipitation over the basin were smaller in the WRF than the ECHAM6. High spatial pattern correlations between 0.7 and 0.8 were achieved for the autumn precipitation and low spatial correlation in the range of 0.0 and 0.2 for the winter season precipitation over the whole basin and all the three belts over the basin.

Keywords

High resolution Validation Regional climate modeling Volta Basin WRF Temperature Precipitation 

Notes

Acknowledgements

This study was financially supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) project. We gratefully acknowledge the funding of the work. The authors are thankful to staff members of the German Climate Centre (DKRZ) and the Institute of Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU) for, respectively, providing high performance computing facilities and other important tools that were used to perform this regional climate simulation with the WRF model. We appreciate the contributions of the WRF community for the provision of the WRF codes, Maxwell Planck’s Institute (MPI), and the European Centre for Medium-range Weather Forecasting (ECMWF) for providing the forcing data. We acknowledge the usefulness of the observed gridded temperature data from the Climate Research Unit (CRU) and precipitation from the Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst (DWD).

References

  1. Afiesimama EA, Pal JS, Abiodun BJ, Gutowski WJ Jr, Adedoyin A (2006) Simulation of west African monsoon using the RegCM3. Part I: model validation and interannual variability. Theor Appl Climatol 86:23–37CrossRefGoogle Scholar
  2. Amisigo BA (2005) Modelling riverflow in the Volta Basin of West Africa: a data-driven framework. Ecology and development series no. 34, Cuvillier Verlag Göttingen, 175 pp.Google Scholar
  3. Annor T (2015) Potential impacts of climate variability and change on hydrology and water resources over the Volta Basin. PhD Dissertation, Federal University of Technology Akure, Nigeria, 115 pp.Google Scholar
  4. Bekoe EO (2013) The impact of droughts and climate change on electricity generation in Ghana. Environ Sci 1:13–24Google Scholar
  5. Beljaars ACM (1994) The parameterization of surface fluxes in large-scale models under free convection. Quart J Roy Meteor Soc 121:255–270CrossRefGoogle Scholar
  6. Berg P, Wagner S, Kunstmann H, Schädler G (2013) High resolution regional climate model simulations for Germany: part I-validation. Clim Dyn 40:40–414. doi: 10.1007/s00382-012-1508-8 Google Scholar
  7. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2009) Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim Dyn 32:1097–1106. doi: 10.1007/s00382-008-0446-y1 CrossRefGoogle Scholar
  8. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520. doi: 10.1007/s00382-009-0683-8 CrossRefGoogle Scholar
  9. Castro CL, Pielke RA, Leoncini G (2005) Dynamical downscaling: an assessment of value added using a regional climate model. J Geophys Res 110:D05108CrossRefGoogle Scholar
  10. Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modelling system. Part I: model implementation and sensitivity. Mon.Weather Rev 129:569–585CrossRefGoogle Scholar
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137:553–597. ISSN 1477-870X. doi: 10.1002/qj.828 (Part A) CrossRefGoogle Scholar
  12. Di Luca A, de Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high resolution nested regional climate models and observations. Clim Dyn 38:1229–1247CrossRefGoogle Scholar
  13. Di Luca A, de Elia R, Laprise R (2013) Potential for small scale added value of RCM’s downscaled climate change signal. Clim Dyn 40:1415–1433CrossRefGoogle Scholar
  14. Dinku T, Connor SJ, Ceccato P, Ropelewski CF (2008) Comparison of global gridded precipitation products over a mountainous region of Africa. Int J Climatol 28:1627–1638CrossRefGoogle Scholar
  15. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two–dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  16. Dyer AJ, Hicks BB (1970) Flux–gradient relationships in the constant flux layer. Quart J Roy Meteor Soc 96:715–721CrossRefGoogle Scholar
  17. Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17:294–304CrossRefGoogle Scholar
  18. Feser F (2006) Enhanced detectability of added value in limited-areamodel results separated into different spatial scales. Mon Weather Rev 134:2180–2197CrossRefGoogle Scholar
  19. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European alps. J Geophys Res 108:4124–4143. doi: 10.1029/2002JD002287 CrossRefGoogle Scholar
  20. Giorgetta M, Jungclaus J, Reick C, Legutke S, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Müller W, Notz D, Raddatz T, Rast S, Roeckner E, Salzmann M, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2012) CMIP5 simulations of the max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-MR model: the historical experiment, served by ESGF. World Data Center Clim (WDCC). doi: 10.1594/WDCC/CMIP5.MXMRhi
  21. Giorgetta MA, Roeckner E, Mauritsen T, Bader J, Crueger T, Esch M, Rast S, Kornblueh L, Schmidt H, Kinne S, Hohenegger C, Möbis B, Krismer T, Wieners KH, Stevens B (2013) The atmospheric general circulation model ECHAM6 model description. Reports on Earth System Science, MPI-M, Germany. ISSN 1614-1199Google Scholar
  22. Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV France 139:101–118. doi: 10.1051/jp4:2006139008 CrossRefGoogle Scholar
  23. Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490CrossRefGoogle Scholar
  24. Giorgi, F, Coppola, E, Solmon, F, Mariotti, L, Sylla, MB, Bi, X, Elguindi, N, Diro, GT, Nair, V, Giuliani, G, Turuncoglu, UU, Cozzini, S, Güttler, I, O’Brien, TA, Tawfik, AB, Shalaby, A, Zakey, AS, Steiner, AL, Stordal, F, Sloan, LC, Brankovic, C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim. Res. 52: 7–29. doi: 10.3354/cr01018
  25. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques Geophys Res Lett 29(14)Google Scholar
  26. Grell GA, Dudhia J and Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR Mesoscale model (MM5), NCAR tech. Note NCAR/TN-398+STR, Natl. Cent. For Atmos. Res., boulder, ColoGoogle Scholar
  27. Gruber A, Su X, Kanamitsu M, Schemm J (2000) The comparison of two merged rain gauge–satellite precipitation datasets. Bull Amer Meteor Soc 81:2631–2644CrossRefGoogle Scholar
  28. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset. Int J Climatol. doi: 10.1002/joc.3711
  29. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  30. IPCC (2001) Climate change 2001: the scientific basis is the most comprehensive and up-to-date scientific assessment of past, present and future climate change. The report. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University press, CambridgeGoogle Scholar
  31. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  32. IPCC (2013) Climate change 2013 the physical science basis: in: stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels a, Xia Y, Bex V, Midgley PM contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change summary for policymaker. IPCC, Switzerland. www.Ipcc.Ch and the IPCC WGI AR5 website www.climatechange2013.org
  33. Jung G, Kunstmann H (2007) High-resolution regional climate modeling for the Volta region of West Africa. J Geophy Res 112:D23108. doi: 10.1029/2006JD007951 CrossRefGoogle Scholar
  34. Jung G, Wagner S, Kunstmann H (2012) Joint climate–hydrology modeling: an impact study for the data-sparse environment of the Volta Basin in West Africa. Hydrol Res 43(3):231–248CrossRefGoogle Scholar
  35. Kasei, AR (2009) Modeling impacts of climate change on water resources in the Volta Basin, West Africa. Ph.D. thesis, 195 pp., University of Bonn, GermanyGoogle Scholar
  36. Katragkou E, García-Díez M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Karacostas T, Knist S, Mayer S, Soares PMM, Pytharoulis I, Tegoulias I, Tsikerdekis A, Jacob D (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618CrossRefGoogle Scholar
  37. Kunstmann H, Jung G (2005) Impact of regional climate change on water availability in the Volta basin of West Africa. Regional Hydrological Impacts of Climatic Variability and Change (Proceedings of symposium S6 held 1 during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, April 2005). IAHS Publ 295, 2005Google Scholar
  38. Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulations of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res Atmos 116(D15):16CrossRefGoogle Scholar
  39. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J Geophy Res 102:16663–16682CrossRefGoogle Scholar
  40. Mooney PA, Mulligan FJ, Fealy R (2013) Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of europe over the period 1990–95. J. Clim 26:1002–1017CrossRefGoogle Scholar
  41. Neumann R, Jung G, Laux P, Kunstmann H (2007) Climate trends of temperature, precipitation and river discharge in the Volta Basin of West Africa. Intl. J. River Basin Manag 5:17–30CrossRefGoogle Scholar
  42. Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK (2003) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC Rainfall Product and Pre-TRMM Satellite and Blended Products. J Appl Meteorol 42:1337–1354CrossRefGoogle Scholar
  43. Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078CrossRefGoogle Scholar
  44. Noble E, Druyan L, Fulakeza M (2014) The sensitivity of WRF daily summertime simulations over West Africa to alternative parameterizations. Part 1: African wave circulation. Mon Wea Rev 142:1588–1608. doi: 10.1175/MWR-D-13-00194.1 CrossRefGoogle Scholar
  45. Oguntunde PG, Abiodun BJ (2013) The impact of climate change on the Niger River basin hydroclimatology, West Africa. Clim Dyn 40:81–94. doi: 10.1007/s00382-012-1498-6 CrossRefGoogle Scholar
  46. Paeth H, Fink AH, Pohle S, Keis F, Mächel H, Samimi C (2011) Meteorological characteristics and potential causes of the 2007 flood in sub-Saharan Africa. Int J Climatol 31:1908–1926CrossRefGoogle Scholar
  47. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861CrossRefGoogle Scholar
  48. Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model Description and Testing. J Appl Meteor Climatol 46:1383–1395CrossRefGoogle Scholar
  49. Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Fox Maule C, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E, Jacob D (2016) Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits? Clim. Dyn 46(1–2):383–412CrossRefGoogle Scholar
  50. Prömmel K, Geyer B, Jones JM, Widmann M (2010) Evaluation of the skill and added value of a reanalysis-driven regional simulation for alpine temperature. Int J Climatol 30:760–773Google Scholar
  51. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler K-G, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574CrossRefGoogle Scholar
  52. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. Technical report, MPImet/MAD GermanyGoogle Scholar
  53. Roeckner E, Lautenschlager M, Schneider H (2006) IPCCAR4 MPI-ECHAM5 T63L31 MPI-OM GR1.5L40 SRESA2 run no.1: atmosphere 6 HOUR values MPImet/MaD Germany, world data Center for Climate, Hamburg, Alemanya. doi:  10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A2_1_6H
  54. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791. doi: 10.1175/JCLI3824.1 CrossRefGoogle Scholar
  55. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) GPCC full data reanalysis version 6.0 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. doi: 10.5676/DWD_GPCC/FD_M_V6_050
  56. Senatore A, Mendicino G, Smiatek G, Kunstmann H (2010) Regional climate change projections and hydrological impact analysis for a Mediterranean basin in southern Italy. J Hydrol 399:70–92CrossRefGoogle Scholar
  57. Sijikumar S, Roucou P, Fontaine B (2006) Monsoon onset over Sudan-Sahel: simulations by regional scale model MM5. Geophys Res Lett 33. doi: 10.1029/2005GL024819
  58. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Technical Report, NCAR, Boulder, Colorado, USAGoogle Scholar
  59. Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High-resolution simulations of west African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor Appl Climatol 98:293–314. doi: 10.1007/s00704-009-0110-4 CrossRefGoogle Scholar
  60. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophy Res 106:7183–7192CrossRefGoogle Scholar
  61. Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction 11–15Google Scholar
  62. Torma C, Giorgi F, Coppola E (2015) Added value of regional climatemodeling over areas characterized by complex terrain—precipitation over the alps. J Geophys Res Atmos 120:3957–3972CrossRefGoogle Scholar
  63. Veljovic K, Rajkovic B, Fennessy MJ, Altshuler EL, Mesinger F (2010) Regional climate modeling: should one attempt improving on the large scales? Lateral boundary condition scheme: any impact? Meteorol Z 19:237–246CrossRefGoogle Scholar
  64. Vigaud N, Roucou P, Fontaine B, Sijikumar S, Tyteca S (2011) WRF/ARPEGE-CLIMAT simulated climate trends over West Africa. Clim Dyn 36:925–944CrossRefGoogle Scholar
  65. Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Quart J Roy Meteor Soc 96:67–90CrossRefGoogle Scholar
  66. Winterfeldt J, Weisse R (2009) Assessment of value added for surface marine wind speed obtained from two regional climate models. Mon Weather Rev 137:2955–2965CrossRefGoogle Scholar
  67. Zhang DL, Anthes RA (1982) A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with SESAME–79 data. J Appl Meteorol 21:1594–1609CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of PhysicsKwame Nkrumah University of Science and Technology (KNUST)KumasiGhana
  2. 2.Federal University of TechnologyAkureNigeria
  3. 3.African Centre of Meteorological Applications for Development (ACMAD)NiameyNiger
  4. 4.Karlsruhe Institute of Technology, Institute of Meteorology and Climate ResearchAtmospheric Environmental ResearchGarmisch-PartenkirchenGermany
  5. 5.University of AugsburgAugsburgGermany

Personalised recommendations