Theoretical and Applied Climatology

, Volume 133, Issue 3–4, pp 867–886 | Cite as

Evaluation of an urban land surface scheme over a tropical suburban neighborhood

  • Suraj HarshanEmail author
  • Matthias Roth
  • Erik Velasco
  • Matthias Demuzere
Original Paper


The present study evaluates the performance of the SURFEX (TEB/ISBA) urban land surface parametrization scheme in offline mode over a suburban area of Singapore. Model performance (diurnal and seasonal characteristics) is investigated using measurements of energy balance fluxes, surface temperatures of individual urban facets, and canyon air temperature collected during an 11-month period. Model performance is best for predicting net radiation and sensible heat fluxes (both are slightly overpredicted during daytime), but weaker for latent heat (underpredicted during daytime) and storage heat fluxes (significantly underpredicted daytime peaks and nighttime storage). Daytime surface temperatures are generally overpredicted, particularly those containing horizontal surfaces such as roofs and roads. This result, together with those for the storage heat flux, point to the need for a better characterization of the thermal and radiative characteristics of individual urban surface facets in the model. Significant variation exists in model behavior between dry and wet seasons, the latter generally being better predicted. The simple vegetation parametrization used is inadequate to represent seasonal moisture dynamics, sometimes producing unrealistically dry conditions.



The authors acknowledge funding from the National University of Singapore under grant R-109-000-091-112 and the National Research Foundation Singapore through the Singapore - MIT Alliance for Research and Technology CENSAM research programme. M. Demuzere was funded by a Flemish regional government FWO (Fund for Scientific Research) post-doctoral position. The authors thank Michelle Cher (East Lodge Hostel) for facilitating access to the Telok Kurau measurement site.


  1. Best MJ, Grimmond CSB (2013) Analysis of the seasonal cycle within the first international urban land-surface model comparison. Bound-Layer Meteorol 146(3):421–446CrossRefGoogle Scholar
  2. Best MJ, Grimmond CSB, Villani MG (2006) Evaluation of the urban tile in MOSES using surface energy balance observations. Bound-Layer Meteorol 118(3):503–525CrossRefGoogle Scholar
  3. Champeaux JL, Masson V, Chauvin F (2005) ECOCLIMAP: a global database of land surface parameters at 1 km resolution. Meteorol Appl 12(1):29–32CrossRefGoogle Scholar
  4. Chen TH, Henderson-Sellers A, Milly PCD, Pitman AJ, Beljaars ACM, Polcher J, Abramopoulos F, Boone A, Chang S, Chen F, Dai Y, Desborough CE, Dickinson RE, Dümenil L, Ek M, Garratt JR, Gedney N, Gusev YM, Kim J, Koster R, Kowalczyk EA, Laval K, Lean J, Lettenmaier D, Liang X, Mahfouf JF, Mengelkamp HT, Mitchell K, Nasonova ON, Noilhan J, Robock A, Rosenzweig C, Schaake J, Schlosser CA, Schulz JP, Shao Y, Shmakin AB, Verseghy DL, Wetzel P, Wood EF, Xue Y, Yang ZL, Zeng Q (1997) Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. J Clim 10(6):1194–1215CrossRefGoogle Scholar
  5. Civil Defence Force (2012) Technical requirements for household shelters 2012. Singapore Civil Defence Force,
  6. Cole R, Sturrock N (1977) The convective heat exchange at the external surface of buildings. Build Environ 12(4):207–214CrossRefGoogle Scholar
  7. Demuzere M, Oleson K, Coutts AM, Pigeon G, Van Lipzig NP (2013) Simulating the surface energy balance over two contrasting urban environments using the Community Land Model Urban. Int J Climatol 33(15):3182–3205CrossRefGoogle Scholar
  8. Demuzere M, Harshan S, Jarvi L, Roth M, Grimmond CS, Masson V, Oleson K, Velasco E, Wouters H (2017) Impact of urban canopy models and external parameters on the modeled urban energy balance in a tropical city. Q J Roy Meteor Soc 143:1581– 1596CrossRefGoogle Scholar
  9. Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, LLe White (2014) IPCC, 2014: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Contribution of working group II to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  10. Fischer G, Van Velthuizen H, Shah M, Nachtergaele F (2002) Global agroecological assessment for agriculture. In: In the 21st century, Rome, food and agriculture organization of the united nations (FAO), and Laxenburg, international institute for applied systems analysis (IIASA), CiteseerGoogle Scholar
  11. Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54(4):1167–1178CrossRefGoogle Scholar
  12. Grimmond CSB, Blackett M, Best MJ, Barlow J, Baik JJ, Belcher SE, Bohnenstengel SI, Calmet I, Chen F, Dandou A (2010) The international urban energy balance models comparison project: first results from phase 1. J Appl Meteorol Climatol 49(6):1268– 1292CrossRefGoogle Scholar
  13. Grimmond CSB, Blackett M, Best MJ, Baik JJ, Belcher SE, Beringer J, Bohnenstengel SI, Calmet I, Chen F, Coutts A (2011) Initial results from Phase 2 of the international urban energy balance model comparison. Int J Climatol 31(2):244–272CrossRefGoogle Scholar
  14. Harshan S (2015) Adaptation of an urban land surface model to a tropical suburban area: offline evaluation, sensitivity analysis, and optimization of TEB/ISBA (SURFEX) PhD thesis. National University of Singapore, SingaporeGoogle Scholar
  15. Iziomon M, Mayer H, Matzarakis A (2003) Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. J Atmos Sol Terr Phys 65(10):1107–1116CrossRefGoogle Scholar
  16. Johnson GT, Oke TR, Lyons TJ, Steyn DG, Watson ID, Voogt JA (1991) Simulation of surface urban heat islands under ‘ideal’ conditions at night Part 1: Theory and tests against field data. Bound-Layer Meteorol 56(3):275–294CrossRefGoogle Scholar
  17. Karam HA, Pereira Filho AJ, Masson V, Noilhan J, Marques Filho EP (2010) Formulation of a tropical town energy budget (t-TEB) scheme. Theor Appl Climatol 101(1):109–120CrossRefGoogle Scholar
  18. Karsisto P, Fortelius C, Demuzere M, Grimmond CSB, Oleson KW, Kouznetsov R, Masson V, Järvi L (2016) Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki. Q J R Meteorol Soc 142(694):401–417. 00004CrossRefGoogle Scholar
  19. Kawai T, Ridwan MK, Kanda M (2009) Evaluation of the simple urban energy balance model using selected data from 1-yr flux observations at two cities. J Appl Meteorol Climatol 48(4):693– 715CrossRefGoogle Scholar
  20. Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound-Layer Meteorol 101(3):329–358CrossRefGoogle Scholar
  21. Lemonsu A, Grimmond CSB, Masson V (2004) Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. J Appl Meteorol 43(2):312–327CrossRefGoogle Scholar
  22. Lemonsu A, Bélair S, Mailhot J, Leroyer S (2010) Evaluation of the town energy balance model in cold and snowy conditions during the Montreal urban snow experiment 2005. J Appl Meteorol Climatol 49(3):346–362CrossRefGoogle Scholar
  23. Lemonsu A, Masson V, Shashua-Bar L, Erell E, Pearlmutter D (2012) Inclusion of vegetation in the Town Energy Balance model for modeling urban green areas. Geosci Model Dev Discuss 5:1295–1340CrossRefGoogle Scholar
  24. Liu X, Li X-X, Harshan S, Roth M, Velasco E (2017) Evaluation of an urban canopy model in a tropical city: the role of tree evapotranspiration. Environ Res Lett. doi: 10.1088/1748-9326/aa7ee7
  25. Loridan T, Grimmond CSB, Grossman-Clarke S, Chen F, Tewari M, Manning K, Martilli A, Kusaka H, Best M (2010) Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. Q J R Meteorol Soc 136(649):997–1019CrossRefGoogle Scholar
  26. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound-Layer Meteorol 17 (2):187–202CrossRefGoogle Scholar
  27. Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Ocean Technol 15(2):416–429CrossRefGoogle Scholar
  28. Mascart P, Noilhan J, Giordani H (1995) A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum. Bound-Layer Meteorol 72(4):331–344CrossRefGoogle Scholar
  29. Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric models. Bound-Layer Meteorol 94(3):357–397CrossRefGoogle Scholar
  30. Masson V (2006) Urban surface modeling and the meso-scale impact of cities. Theor Appl Climatol 84(1):35–45CrossRefGoogle Scholar
  31. Masson V, Grimmond CSB, Oke TR (2002) Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J Appl Meteorol 41(10):1011–1026CrossRefGoogle Scholar
  32. Masson V, Le Moigne P, Martin E, Faroux S, Alias A, Alkama R, Belamari S, Barbu A, Boone A, Bouyssel F, Brousseau P, Brun E, Calvet JC, Carrer D, Decharme B, Delire C, Donier S, Essaouini K, Gibelin AL, Giordani H, Habets F, Jidane M, Kerdraon G, Kourzeneva E, Lafaysse M, Lafont S, Lebeaupin Brossier C, Lemonsu A, Mahfouf JF, Marguinaud P, Mokhtari M, Morin S, Pigeon G, Salgado R, Seity Y, Taillefer F, Tanguy G, Tulet P, Vincendon B, Vionnet V, Voldoire A (2013) The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6(4):929–960CrossRefGoogle Scholar
  33. NEA (2009) WeatherWise Singapore. National Enviromental Agency, Singapore
  34. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Monthly Weather Rev 117(3):536–549CrossRefGoogle Scholar
  35. Oke TR (1987) Boundary layer climates. RoutledgeGoogle Scholar
  36. Oke TR (1988) The urban energy balance. Prog Phys Geogr 12(4):471CrossRefGoogle Scholar
  37. Pigeon G, Moscicki MA, Voogt JA, Masson V (2008) Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme. Meteorog Atmos Phys 102(3):159– 171CrossRefGoogle Scholar
  38. Porson A, Clark PA, Harman IN, Best MJ, Belcher SE (2010a) Implementation of a new urban energy budget scheme in the MetUM. Part I: description and idealized simulations. Q J R Meteorol Soc 136(651):1514–1529CrossRefGoogle Scholar
  39. Porson A, Clark PA, Harman IN, Best MJ, Belcher SE (2010b) Implementation of a new urban energy budget scheme into MetUM. Part II: Validation against observations and model intercomparison, vol 136Google Scholar
  40. Quah AK, Roth M (2012) Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmos Environ 46:92–103CrossRefGoogle Scholar
  41. Roth M (2007) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990CrossRefGoogle Scholar
  42. Roth M, Jansson C, Velasco E (2017) Multi-year energy balance and carbon dioxide fluxes over a residential neighbourhood in a tropical city. Int J Climatol 37:2679–2698CrossRefGoogle Scholar
  43. Rowley FB, Eckley WA (1932) Surface coefficients as affected by wind direction. ASHRAE Trans 38:33–46Google Scholar
  44. Rowley FB, Algren AB, Blackshaw JL (1930) Surface conductances as affected by air velocity, temperature and character of surface. ASHRAE Trans 36:429–446Google Scholar
  45. Solazzo E, Di Sabatino S, Aquilina N, Dudek A, Britter R (2010) Coupling mesoscale modeling with a simple urban model: the Lisbon case study. Bound-Layer Meteorol 137(3):441–457CrossRefGoogle Scholar
  46. Stewart ID, Oke TR (2012) Local Climate Zones for Urban Temperature Studies. Bull Am Meteorol Soc 93(12):1879– 1900CrossRefGoogle Scholar
  47. Thatcher M, Hurley P (2011) Simulating Australian urban climate in a mesoscale atmospheric numerical model. Bound-Layer Meteorol, pp 1–27Google Scholar
  48. Tindale A (2014) Designbuilder software Stroud. Design-Builder Software Ltd, GloucestershireGoogle Scholar
  49. UN (2015) United Nations Population Division: World Population Prospects, the 2015 Revision., accessed: 2017-03-22
  50. Velasco E, Roth M (2010) Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geogr Compass 4(9):1238–1259CrossRefGoogle Scholar
  51. Velasco E, Roth M, Tan SH, Quak M, Nabarro SDA, Norford L (2013) The role of vegetation in the CO 2 flux from a tropical urban neighbourhood. Atmos Chem Phys 13(20):10,185–10,202CrossRefGoogle Scholar
  52. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384CrossRefGoogle Scholar
  53. Wang Z, Bou-Zeid E, Au S, Smith A (2011a) Analyzing the sensitivity of WRF’s single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J Appl Meteorol Climatol 50(9):1795–1814CrossRefGoogle Scholar
  54. Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194Google Scholar
  55. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113 (1–4):223–243CrossRefGoogle Scholar
  56. Wouters H, De Ridder K, Van Lipzig NP (2012) Comprehensive parametrization of surface-layer transfer coefficients for use in atmospheric numerical models. Bound-Layer meteorol 145(3):539–550CrossRefGoogle Scholar
  57. Wouters H, Demuzere M, De Ridder K, van Lipzig NP (2015) The impact of impervious water-storage parametrization on urban climate modelling. Urban Clim 11:24–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Suraj Harshan
    • 1
    Email author
  • Matthias Roth
    • 1
  • Erik Velasco
    • 2
  • Matthias Demuzere
    • 3
    • 4
  1. 1.Department of GeographyNational University of SingaporeSingaporeSingapore
  2. 2.Singapore-MIT Alliance for Research and Technology (SMART)SingaporeSingapore
  3. 3.Department of Earth and Environmental Sciences, KU LeuvenLeuvenBelgium
  4. 4.Laboratory of Hydrology and Water ManagementGhent UniversityGhentBelgium

Personalised recommendations