Advertisement

Theoretical and Applied Climatology

, Volume 133, Issue 3–4, pp 663–679 | Cite as

Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba

  • José Rodríguez-Algeciras
  • Abel Tablada
  • Andreas Matzarakis
Original Paper

Abstract

Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create and renovate urban spaces which are more efficient in diminishing pedestrian thermal stress.

Notes

Acknowledgements

This work was advised by the University of Camagüey-Cuba and Superior Technical School of Architecture of Barcelona (ETSAB). We would like to thank Jorge Metrogos for providing proofreading of the paper.

References

  1. Abreu L, Labaki L, Matzarakis A (2014) Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theor Appl Climatol 115:333–340. doi: 10.1007/s00704-013-0886-0 CrossRefGoogle Scholar
  2. Acero JA, Herranz-Pascual K (2015) A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build Environ 93(Part 2):245–257. doi: 10.1016/j.buildenv.2015.06.028 CrossRefGoogle Scholar
  3. Achour-younsi S, Kharrat F (2016) Outdoor thermal comfort: impact of the geometry of an urban street canyon in a Mediterranean subtropical climate – case study Tunis ,Tunisia. Soc Behav Sci 216:689–700. doi: 10.1016/j.sbspro.2015.12.062 CrossRefGoogle Scholar
  4. Ahmad K, Khare M, Chaudhry KK (2005) Wind tunnel simulation studies on dispersion at urban street canyons and intersections — a review. J Wind Eng Ind Aerodyn 93:697–717. doi: 10.1016/j.jweia.2005.04.002 CrossRefGoogle Scholar
  5. Alcoforado M, Andrade H, Lopes A, Vasconcelos J (2009) Application of climatic guidelines to urban planning. Landsc Urban Plan 90:56–65. doi: 10.1016/j.landurbplan.2008.10.006 CrossRefGoogle Scholar
  6. Andreou E (2013) Thermal comfort in outdoor spaces and urban canyon microclimate. Renew Energy 55:182–188. doi: 10.1016/j.renene.2012.12.040 CrossRefGoogle Scholar
  7. Azmi DI, Karim HA (2012) Implications of walkability towards promoting sustainable urban Neighbourhood. Procedia Social and Behavioral Sciences 50:204–213. doi: 10.1016/j.sbspro.2012.08.028 CrossRefGoogle Scholar
  8. Blecic I, Cecchini A, Trunfio GA (2015) Towards a design support system for urban walkability. Procedia - Procedia Comput Sci 51:2157–2167. doi: 10.1016/j.procs.2015.05.489 CrossRefGoogle Scholar
  9. Bourbia F, Awbi H (2004) Building cluster and shading in urban canyon for hot dry climate part 1: air and surface temperature measurements. Renew Energy 29:249–262. doi: 10.1016/S0960-1481(03)00170-8 CrossRefGoogle Scholar
  10. Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29:118–125. doi: 10.1016/j.cities.2011.08.006 CrossRefGoogle Scholar
  11. Coccolo S, Kämpf J, Scartezzini J, Pearlmutter D (2016) Urban climate outdoor human comfort and thermal stress: a comprehensive review on models and standards. UCLIM. doi: 10.1016/j.uclim.2016.08.004
  12. Cohen P, Potchter O, Matzarakis A (2013) Human thermal perception of coastal Mediterranean outdoor urban environments. Appl Geogr 37:1–10. doi: 10.1016/j.apgeog.2012.11.001 CrossRefGoogle Scholar
  13. Coutts AM, White EC, Tapper NJ et al (2015) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor Appl Climatol. doi: 10.1007/s00704-015-1409-y
  14. Deb C, Ramachandraiah A (2010) The significance of physiological equivalent temperature ( PET ) in outdoor thermal comfort studies. Int J Eng Sci Technol 2:2825–2828Google Scholar
  15. Emmanuel R, Johansson E (2006) Influence of urban morphology and sea breeze on hot humid microclimate: the case of Colombo, Sri Lanka. Clim Res 30:189–200CrossRefGoogle Scholar
  16. Farajzadeh H, Matzarakis A (2012) Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theor Appl Climatol 107:451–459. doi: 10.1007/s00704-011-0492-y CrossRefGoogle Scholar
  17. Givoni B (1994) Urban design for hot humid regions. Renew Energy 5:1047–1053. doi: 10.1016/0960-1481(94)90132-5 CrossRefGoogle Scholar
  18. Gómez F, Pérez A, Valcuende M, Matzarakis A (2013) Research on ecological design to enhance comfort in open spaces of a city (Valencia, Spain). Utility of the physiological equivalent temperature (PET). Ecol Eng 57:27–39. doi: 10.1016/j.ecoleng.2013.04.034 CrossRefGoogle Scholar
  19. Hassen N, Kaufman P (2016) Health & place examining the role of urban street design in enhancing community engagement: a literature review. Health Place 41:119–132. doi: 10.1016/j.healthplace.2016.08.005 CrossRefGoogle Scholar
  20. Herrmann J, Matzarakis A (2012) Mean radiant temperature in idealised urban canyons--examples from Freiburg, Germany. Int J Biometeorol 56:199–203. doi: 10.1007/s00484-010-0394-1 CrossRefGoogle Scholar
  21. Höppe P (1999) The physiological equivalent temperature in an universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75. doi: 10.1007/s004840050118 CrossRefGoogle Scholar
  22. Jamei E, Rajagopalan P, Seyedmahmoudian M, Jamei Y (2016) Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew Sust Energ Rev 54:1002–1017. doi: 10.1016/j.rser.2015.10.104 CrossRefGoogle Scholar
  23. Jihad AS, Tahiri M (2016) Urban climate modeling the urban geometry influence on outdoor thermal comfort in the case of Moroccan microclimate. URBAN Clim 16:25–42. doi: 10.1016/j.uclim.2016.02.002 CrossRefGoogle Scholar
  24. Ketterer C, Matzarakis A (2014) Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landsc Urban Plan 122:78–88. doi: 10.1016/j.landurbplan.2013.11.003 CrossRefGoogle Scholar
  25. Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263. doi: 10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  26. Kuttler W (2000) Stadtklima. In: Handbuch der Umweltveränderungen und Ökotoxologie, Band 1B. Springer-Verlag, Atmosphäre, pp 420–470Google Scholar
  27. Lai D, Guo D, Hou Y et al (2014) Studies of outdoor thermal comfort in northern China. Build Environ 77:110–118. doi: 10.1016/j.buildenv.2014.03.026 CrossRefGoogle Scholar
  28. Lee H, Mayer H, Chen L (2016) Landscape and urban planning contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc Urban Plan 148:37–50. doi: 10.1016/j.landurbplan.2015.12.004 CrossRefGoogle Scholar
  29. Lin TP (2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build Environ 44:2017–2026. doi: 10.1016/j.buildenv.2009.02.004 CrossRefGoogle Scholar
  30. Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in sun moon Lake, Taiwan. Int J Biometeorol 52:281–290. doi: 10.1007/s00484-007-0122-7 CrossRefGoogle Scholar
  31. Lin TP, Matzarakis A (2011) Tourism climate information based on human thermal perception in Taiwan and eastern China. Tour Manag 32:492–500. doi: 10.1016/j.tourman.2010.03.017 CrossRefGoogle Scholar
  32. Lin TP, Matzarakis A, Hwang RL et al (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45:213–221. doi: 10.1016/j.buildenv.2009.06.002 CrossRefGoogle Scholar
  33. Lin TP, Tsai K, Hwang R, Matzarakis A (2012) Quantification of the effect of thermal indices and sky view factor on park attendance. Landsc Urban Plan 107:137–146. doi: 10.1016/j.landurbplan.2012.05.011 CrossRefGoogle Scholar
  34. Lobaccaro G, Acero JA (2015) Urban climate comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim 14:251–267. doi: 10.1016/j.uclim.2015.10.002 CrossRefGoogle Scholar
  35. Lopes A, Lopes S, Matzarakis A, Alcoforado MJ (2011) The influence of the summer sea breeze on thermal comfort in Funchal (Madeira). A contribution to tourism and urban planning. Meteorol Zeitschrift 20:553–564. doi: 10.1127/0941-2948/2011/0248 CrossRefGoogle Scholar
  36. Lynch K (1960) The image of the City. Mass EE.UU, BostonGoogle Scholar
  37. Marshall JD, Brauer M, Frank LD (2009) Healthy neighborhoods: walkability and air pollution. Environ Health Perspect 117:1752–1759. doi: 10.1289/ehp.0900595 CrossRefGoogle Scholar
  38. Martinelli L, Lin T, Matzarakis A (2015) Assessment of the in fl uence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period. Build Environ 92:30–38. doi: 10.1016/j.buildenv.2015.04.013 CrossRefGoogle Scholar
  39. Matzarakis A (2014) Transfer of climate data for tourism applications - the climate-tourism / Transfer-information-scheme. Sustain Environ Res 24:273–280Google Scholar
  40. Matzarakis A, Mayer H, Iziomon M (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84CrossRefGoogle Scholar
  41. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments--application of the RayMan model. Int J Biometeorol 51:323–334. doi: 10.1007/s00484-006-0061-8 CrossRefGoogle Scholar
  42. Matzarakis A, Najjar G, De Rocco M (2009) Thermal bioclimate in Strasbourg - the 2003 heat wave. Theor Appl Climatol 98:209–220. doi: 10.1007/s00704-009-0102-4 CrossRefGoogle Scholar
  43. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. doi: 10.1007/s00484-009-0261-0 CrossRefGoogle Scholar
  44. Matzarakis A, Hämmerle M, Koch E, Rudel E (2012) The climate tourism potential of alpine destinations using the example of Sonnblick, Rauris and Salzburg. Theor Appl Climatol 110:645–658. doi: 10.1007/s00704-012-0686-y CrossRefGoogle Scholar
  45. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49CrossRefGoogle Scholar
  46. Morakinyo TE, Lam YF (2016) Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build Environ 103:262–275. doi: 10.1016/j.buildenv.2016.04.025 CrossRefGoogle Scholar
  47. Ndetto EL, Matzarakis A (2013) Basic analysis of climate and urban bioclimate of Dar es salaam, Tanzania. Theor Appl Climatol 114:213–226. doi: 10.1007/s00704-012-0828-2 CrossRefGoogle Scholar
  48. Oke TR (1973) City size and the urban heat island. Atmos Environ 7:769–779CrossRefGoogle Scholar
  49. Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11:103–113CrossRefGoogle Scholar
  50. Qaid A, Ossen DR (2015) Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int J Biometeorol 59(6):657–677. doi: 10.1007/s00484-014-0878-5 CrossRefGoogle Scholar
  51. Rodríguez-Algeciras J, Matzarakis A (2016) Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of Barcelona. Spain Int J Biometeorol doi. doi: 10.1007/s00484-015-1121-8
  52. Rodríguez-Algeciras J, Coch H, De la Paz PG et al (2015) Human thermal comfort conditions and urban planning in hot-humid climates—the case of Cuba. Int J Biometeorol 60:1151–1164. doi: 10.1007/s00484-015-1109-4 CrossRefGoogle Scholar
  53. Rodríguez-Algeciras J, Gómez Consuegra L, Matzarakis A (2016) Spatial-temporal study on the effects of urban street con fi gurations on human thermal comfort in the world heritage city of Camagüey-Cuba. Build Environ 101:85–101. doi: 10.1016/j.buildenv.2016.02.026 CrossRefGoogle Scholar
  54. Rodríguez Valdés R (2008) The urban landscape in the historic center of Santiago de Cuba: graphic-theoretical method for its morphotypological characterization (doctoral thesis). Universidad de Oriente, Santiago de CubaGoogle Scholar
  55. Rutty M, Scott D (2014) Bioclimatic comfort and the thermal perceptions and preferences of beach tourists. Int J Biometeorol 59:37–45. doi: 10.1007/s00484-014-0820-x CrossRefGoogle Scholar
  56. Salata F, Golasi I, de Lieto VR, de Lieto VA (2016) Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build Environ 96:46–61. doi: 10.1016/j.buildenv.2015.11.023 CrossRefGoogle Scholar
  57. Sanusi RB, Johnstone D, May P, Livesley SJ (2016) Street orientation and side of the street greatly influence the microclimatic benefits street trees can provide in summer. J Environ Qual 45:167–174. doi: 10.2134/jeq2015.01.0039 CrossRefGoogle Scholar
  58. Shamsuddin S, Abu R, Ilani SF (2012) Walkable Environment in Increasing the Liveability of a City 50:167–178. doi: 10.1016/j.sbspro.2012.08.025 Google Scholar
  59. Sharmin T, Steemers K, Matzarakis A (2015) Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka, Bangladesh. Build Environ 94:734–750. doi: 10.1016/j.buildenv.2015.10.007 CrossRefGoogle Scholar
  60. Shiue I, Matzarakis A (2011) Estimation of the tourism climate in the hunter region, Australia, in the early twenty-first century. Int J Biometeorol 55:565–574. doi: 10.1007/s00484-010-0369-2 CrossRefGoogle Scholar
  61. Singh R (2016) Factors affecting walkability of neighborhoods. Procedia - Social and Behavioral Sciences 216:643–654. doi: 10.1016/j.sbspro.2015.12.048 CrossRefGoogle Scholar
  62. Spagnolo J, De Dear R (2003) A human thermal climatology of subtropical Sydney. Int J Climatol 23:1383–1395. doi: 10.1002/joc.939 CrossRefGoogle Scholar
  63. Tablada A, De Troyer F, Blocken B et al (2009) On natural ventilation and thermal comfort in compact urban environments – the old Havana case. Build Environ 44:1943–1958. doi: 10.1016/j.buildenv.2009.01.008 CrossRefGoogle Scholar
  64. Taleghani M, Kleerekoper L, Tenpierik M, Van Den DA (2015) Outdoor thermal comfort within fi ve different urban forms in the Netherlands. Build Environ 83:65–78. doi: 10.1016/j.buildenv.2014.03.014 CrossRefGoogle Scholar
  65. Tandy C (1982) Landscape of industry, 2nd edn. Blume, MadridGoogle Scholar
  66. Toy S, Kántor N (2016) Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city. Environ Sci Pollut Res. doi: 10.1007/s11356-016-7902-8
  67. Tumini I, Higueras Garcia E (2016) Urban microclimate and thermal comfort modelling : strategies for urban renovation. Int J Sustain Build Technol Urban Dev. doi: 10.1080/2093761X.2016.1152204
  68. UNEI (2012) Statistical yearbook. Oficina Nacional de Estadística e Información, La HabanaGoogle Scholar
  69. VDI (1998) Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning. Part I: Climate. VDI guildline 3787. Part 2. Berlin: Beuth.Google Scholar
  70. Villadiego K, Velay M (2014) Outdoor thermal comfort in a hot and humid climate of Colombia: a field study in Barranquilla. Build Environ 75:142–152. doi: 10.1016/j.buildenv.2014.01.017 CrossRefGoogle Scholar
  71. Watanabe S, Ishii J (2016) Effect of outdoor thermal environment on pedestrians ’ behavior selecting a shaded area in a humid subtropical region. Build Environ 95:32–41. doi: 10.1016/j.buildenv.2015.09.015 CrossRefGoogle Scholar
  72. Wong PP, Lai P, Low C et al (2016) The impact of environmental and human factors on urban heat and microclimate variability. Build Environ 95:199–208. doi: 10.1016/j.buildenv.2015.09.024 CrossRefGoogle Scholar
  73. Yang W, Wong NH, Zhang G (2013) A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. Int J Biometeorol 57:895–907. doi: 10.1007/s00484-012-0616-9 CrossRefGoogle Scholar
  74. Yang W, Hien N, Lin Y (2015) Thermal comfort in high-rise urban environments in Singapore. Procedia Eng 121:2125–2131. doi: 10.1016/j.proeng.2015.09.083 CrossRefGoogle Scholar
  75. Yang W, Wong NH, Li CQ (2016) Effect of street design on outdoor thermal comfort in an urban street in Singapore. J Urban Plan Dev. doi: 10.1061/(ASCE)UP.1943-5444.0000285
  76. Zaninović K, Matzarakis A (2009) The bioclimatological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374. doi: 10.1007/s00484-009-0219-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of ArchitectureUniversity of CamagüeyCamagüeyCuba
  2. 2.Architecture Technical School of BarcelonaBarcelonaSpain
  3. 3.Department of ArchitectureNational University of SingaporeSingaporeSingapore
  4. 4.Research Center Human BiometeorologyDeutscher WetterdienstGermany

Personalised recommendations