Advertisement

Theoretical and Applied Climatology

, Volume 132, Issue 3–4, pp 857–865 | Cite as

An analysis of spatial representativeness of air temperature monitoring stations

  • Suhua Liu
  • Hongbo Su
  • Jing Tian
  • Weizhen Wang
Original Paper

Abstract

Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius (r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (grant number 41571356), the National Key Research and Development Program of China (grant number 2016YFA0602501), and the National Natural Science Foundation of China (grant numbers 41671354, 41671373, 41671368, 41371348).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Dutton EG, Nelson DW, Stone RS et al (2006) Decadal variations in surface solar irradiance as observed in a globally remote network. J Geophys Res Atmos 111:1–10. doi: 10.1029/2005JD006901 CrossRefGoogle Scholar
  2. French AN, Jacob F, Anderson MC et al (2005) Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sens Environ 99:55–65. doi: 10.1016/j.rse.2005.05.015 CrossRefGoogle Scholar
  3. Hartkamp AD, De Beurs K, Stein A, White JW (1999) Interpolation techniques for climate variables. NRG-GIS Series 99-01, CIMMYT, Mexico, D.FGoogle Scholar
  4. Huld TA, Šúri M, Dunlop ED, Micale F (2006) Estimating average daytime and daily temperature profiles within Europe. Environ Model Softw 21:1650–1661. doi: 10.1016/j.envsoft.2005.07.010 CrossRefGoogle Scholar
  5. Jacobs JD (1989) Spatial representativeness of climatic data from Baffin Island, N.W.T., with implications for muskoxen and caribou distribution. Arctic 42:50–56CrossRefGoogle Scholar
  6. Janssen S, Dumont G, Fierens F et al (2012) Land use to characterize spatial representativeness of air quality monitoring stations and its relevance for model validation. Atmos Environ 59:492–500. doi: 10.1016/j.atmosenv.2012.05.028 CrossRefGoogle Scholar
  7. Lakshmi V, Czajkowski K, Dubayah R, Susskind J (2001) Land surface air temperature mapping using TOVS and AVHRR. Int J Remote Sens 22:643–662. doi: 10.1080/01431160050505900 CrossRefGoogle Scholar
  8. Leclerc MY, Shen S, Lamb B (1997) Observations and large-eddy simulation modeling of footprints in the lower convective boundary layer. J Geophys Res 102:9323–9334. doi: 10.1029/96JD03984 CrossRefGoogle Scholar
  9. Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform 6:228–241. doi: 10.1016/j.ecoinf.2010.12.003 CrossRefGoogle Scholar
  10. Li X, Cheng G, Liu S et al (2013) Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bull Am Meteorol Soc 94:1145–1160CrossRefGoogle Scholar
  11. Li H, Sun D, Yu Y et al (2014) Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sens Environ 142:111–121. doi: 10.1016/j.rse.2013.11.014 CrossRefGoogle Scholar
  12. Liu SM, Xu ZW, Wang WZ et al (2011) A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol Earth Syst Sci 15:1291–1306. doi: 10.5194/hess-15-1291-2011 CrossRefGoogle Scholar
  13. Liu Q, Wen J, Wu S, Qu Y (2014) Albedo dataset in 30m-resolution in the Heihe River Basin in 2012. Heihe Plan Sci Data Cent. doi: 10.3972/heihe.001.2014.db Google Scholar
  14. Liu S, Xu Z, Song L et al (2016) Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric For Meteorol. doi: 10.1016/j.agrformet.2016.04.008 Google Scholar
  15. Martín F, Fileni L, Palomino I et al (2014) Analysis of the spatial representativeness of rural background monitoring stations in Spain. Atmos Pollut Res 5:779–788CrossRefGoogle Scholar
  16. Masson V, Grimmond CSB, Oke TR (2002) Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J Appl Meteorol 41:1011–1026CrossRefGoogle Scholar
  17. McKitrick RR, Michaels PJ (2007) Quantifying the influence of anthropogenic surface processes and inhomogeneities on gridded global climate data. J Geophys Res Atmos 112:1–14. doi: 10.1029/2007JD008465 CrossRefGoogle Scholar
  18. Prihodko L, Goward SN (1997) Estimation of air temperature from remotely sensed surface observations. Remote Sens Environ 60:335–346. doi: 10.1016/s0034-4257(96)00216-7 CrossRefGoogle Scholar
  19. Reynolds AM (1998) A two-dimensional Lagrangian stochastic dispersion model for convective boundary layers with wind shear. Boundary-Layer Meteorol 86:345–352CrossRefGoogle Scholar
  20. Righini G, Cappelletti A, Ciucci A et al (2014) GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmos Environ 97:121–129. doi: 10.1016/j.atmosenv.2014.08.015 CrossRefGoogle Scholar
  21. Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol 50:355–373. doi: 10.1007/BF00120530 CrossRefGoogle Scholar
  22. Shao QQ, Sun CY, Liu JY et al (2011) Impact of urban expansion on meteorological observation data and overestimation to regional air temperature in China. J Geogr Sci 21:994–1006. doi: 10.1007/s11442-011-0895-9 CrossRefGoogle Scholar
  23. Xu CD, Wang JF, Hu MG, Li QX (2013a) Interpolation of missing temperature data at meteorological stations using P-BSHADE. J Clim 26:7452–7463. doi: 10.1175/JCLI-D-12-00633.1 CrossRefGoogle Scholar
  24. Xu Z, Liu S, Li X et al (2013b) Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J Geophys Res Atmos 118:13,140–13,157. doi: 10.1002/2013JD020260 CrossRefGoogle Scholar
  25. Xu B, Li J, Xin X et al (2015) Review of methods for evaluating representativeness of ground station observation. J Remote Sens 19:703–718Google Scholar
  26. Zhang R, Rong Y, Tian J et al (2015) A remote sensing method for estimating surface air temperature and surface vapor pressure on a regional scale. Remote Sens 7:6005–6025. doi: 10.3390/rs70506005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Civil, Environmental and Geomatics EngineeringFlorida Atlantic UniversityFloridaUSA
  4. 4.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations