Advertisement

Theoretical and Applied Climatology

, Volume 121, Issue 3–4, pp 767–773 | Cite as

Symmetric scaling properties in global surface air temperature anomalies

  • Costas A. VarotsosEmail author
  • Maria N. Efstathiou
Original Paper

Abstract

We have recently suggested “long-term memory” or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

Keywords

Detrended Fluctuation Analysis Local Slope Fluctuation Function Abovementioned Result Linear Local Trend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarez-Ramirez J, Rodriguez E, Carlos Echeverria J (2009) A DFA approach for as sessing asymmetric correlations. Physica A 388(12):2263–2270CrossRefGoogle Scholar
  2. Ausloos M, Ivanova K (2001) Power-law correlations in the southern–oscillation-index fluctuations characterizing El Nino. Phys Rev E. doi: 10.1103/PhysRevE.63.047201 Google Scholar
  3. Bunde A, Havlin S (2002) Power-law persistence in the atmosphere and in the oceans. Physica A 314(1–4):15–24CrossRefGoogle Scholar
  4. Cracknell AP, Varotsos CA (1995) The present status of the total ozone depletion over Greece and Scotland: a comparison between Mediterranean and more northerly latitudes. Int J Remote Sens 16(10):1751–1763CrossRefGoogle Scholar
  5. Cracknell AP, Varotsos CA (2007a) The IPCC fourth assessment report and the fiftieth anniversary of Sputnik. Environ Sci Pollut Res 14:384–387CrossRefGoogle Scholar
  6. Cracknell AP, Varotsos CA (2007b) Editorial and cover: fifty years after the first artificial satellite: from Sputnik 1 to ENVISAT. Int J Remote Sens 28(10):2071–2072CrossRefGoogle Scholar
  7. Cracknell AP, Varotsos CA (2011) New aspects of global climate-dynamics research and remote sensing. Int J Remote Sens 32(3):579–600CrossRefGoogle Scholar
  8. Efstathiou MN, Varotsos CA (2010) On the altitude dependence of the temperature scaling behaviour at the global troposphere. Int J Remote Sens 31(2):343–349CrossRefGoogle Scholar
  9. Efstathiou MN, Varotsos CA (2012) Intrinsic properties of Sahel precipitation anomalies and rainfall. Theor Appl Climatol 109(3–4):627–633CrossRefGoogle Scholar
  10. Efstathiou MN, Varotsos CA, Singh RP, Cracknell AP, Tzanis C (2003) On the longitude dependence of total ozone trends over middle-latitudes. Int J Remote Sens 24(6):1361–1367CrossRefGoogle Scholar
  11. Efstathiou MN, Tzanis C, Varotsos CA (2009) Long-term memory dynamics of total ozone content. Int J Remote Sens 30(15–16):3943–3950Google Scholar
  12. Efstathiou MN, Tzanis C, Cracknell A, Varotsos CA (2011) New features of the land and sea surface temperature anomalies. Int J Remote Sens 32:3231–3238CrossRefGoogle Scholar
  13. Efstathiou M, Tzanis C, Varotsos C, Deligiorgi D (2012) The Gutenberg-Richter law for earthquakes in air pollution episodes: a case study for Athens, Greece. Acta Geophys 60(1):280–290CrossRefGoogle Scholar
  14. Franzke C (2012) Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J Clim 25:4172–4183. doi: 10.1175/JCLI-D-11-00293.1 CrossRefGoogle Scholar
  15. Grassl H (2011) Climate change challenges. Surv Geophys 32(4–5):319–328. doi: 10.1007/s10712-011-9129-z CrossRefGoogle Scholar
  16. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316:87–114CrossRefGoogle Scholar
  17. Kondratyev KY, Varotsos C (1995a) Atmospheric greenhouse effect in the context of global climate change. Il Nuovo Cimento C 18(2):123–151CrossRefGoogle Scholar
  18. Kondratyev KY, Varotsos CA (1995b) Atmospheric ozone variability in the context of global change. Int J Remote Sens 16(10):1851–1881CrossRefGoogle Scholar
  19. Kondratyev KY, Varotsos CA (1995c) Volcanic eruptions and global ozone dynamics. Int J Remote Sens 16(10):1887–1895CrossRefGoogle Scholar
  20. Kondratyev KY, Varotsos CA (2001) Global tropospheric ozone dynamics. Environ Sci Pollut Res 8(2):113–119CrossRefGoogle Scholar
  21. Kondratyev KY, Varotsos C (2002) Review article-remote sensing and global tropospheric ozone observed dynamics. Int J Remote Sens 23(1):159–178CrossRefGoogle Scholar
  22. Lovejoy S (2014) Return periods of global climate fluctuations and the pause. Geophys Res Lett 41:4704–4710. doi: 10.1002/2014GL060478 Google Scholar
  23. Lovejoy S, Schertzer D (2013) The weather and climate: emergent laws and multifractal cascades. Cambridge University Press, Cambridge, p 496CrossRefGoogle Scholar
  24. Maraun D, Rust HW, Timmer J (2004) Tempting long-memory—on the interpretation of DFA results. Nonlinear Process Geophys 11:495–503CrossRefGoogle Scholar
  25. Monetti RA, Havlin S, Bunde A (2003) Long-term persistence in the sea surface temperature fluctuations. Physica A 320:581–589CrossRefGoogle Scholar
  26. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685–1689CrossRefGoogle Scholar
  27. Rust HW (2007) Detection of long-range dependence—applications in climatology and hydrology. Ph.D. thesis, Potsdam University, Potsdam, GermanyGoogle Scholar
  28. Tsekouras G, Koutsoyiannis D (2014) Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy. Renew Energy 63:624–633CrossRefGoogle Scholar
  29. Tsonis A, Elsner J (1995) Testing for scaling in natural forms and observables. J Stat Phys 81:869–880CrossRefGoogle Scholar
  30. Tzanis C, Theodorakopoulou K, Theodorakopoulos P, Varotsos C (2010) Tsunamis among the natural disasters. Fresenius’ Environ Bull 19(8):1385–1403Google Scholar
  31. Varotsos C (2005) Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26(16):3333–3342CrossRefGoogle Scholar
  32. Varotsos CA (2013) The global signature of the ENSO and SST-like fields. Theor Appl Climatol 113(1–2):197–204CrossRefGoogle Scholar
  33. Varotsos CA, Efstathiou MN (2013) Is there any long-term memory effect in the tropical cyclones? Theor Appl Climatol 114(3–4):643–650CrossRefGoogle Scholar
  34. Varotsos C, Kirk-Davidoff D (2006) Long-memory processes in ozone and temperature variations at the region 60 S–60 N. Atmos Chem Phys 6(12):4093–4100CrossRefGoogle Scholar
  35. Varotsos C, Ondov J, Efstathiou M (2005) Scaling properties of air pollution in Athens, Greece and Baltimore, Maryland. Atmos Environ 39(22):4041–4047CrossRefGoogle Scholar
  36. Varotsos C, Efstathiou M, Tzanis C (2009) Scaling behaviour of the global tropopause. Atmos Chem Phys 9(2):677–683CrossRefGoogle Scholar
  37. Varotsos CA, Efstathiou MN, Cracknell AP (2013a) On the scaling effect in global surface air temperature anomalies. Atmos Chem Phys 13(10):5243–5253CrossRefGoogle Scholar
  38. Varotsos CA, Efstathiou MN, Cracknell AP (2013b) Plausible reasons for the inconsistencies between the modeled and observed temperatures in the tropical troposphere. Geophys Res Lett 40(18):4906–4910CrossRefGoogle Scholar
  39. Varotsos CA, Franzke CL, Efstathiou MN, Degermendzhi AG (2014) Evidence for two abrupt warming events of SST in the last century. Theor Appl Climatol 116(1–2):51–60CrossRefGoogle Scholar
  40. Weber RO, Talkner P (2001) Spectra and correlations of climate data from days to decades. J Geophys Res 106:20131–20144CrossRefGoogle Scholar
  41. Wiener N (1950) Extrapolation, interpolation and smoothing of stationary time series. MIT Technology Press and Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Climate Research Group, Division of Environmental Physics and Meteorology, Faculty of PhysicsUniversity of AthensAthensGreece

Personalised recommendations