Advertisement

Theoretical and Applied Climatology

, Volume 119, Issue 3–4, pp 629–638 | Cite as

Sharp rise in hurricane and cyclone count during the last century

  • C. A. Varotsos
  • M. N. Efstathiou
  • A. P. Cracknell
Original Paper

Abstract

In the present analysis, we study the North Atlantic hurricanes and the tropical cyclones over the Atlantic, attempting to statistically contribute to the study of the recently observed rapid shifts of sea surface temperature anomalies (SSTa) and hurricane activity. Indeed, the annual values of hurricane count (HC), during 1900–2012, seem to show two abrupt increasing events which temporally coincide with the SST shifts. Moreover, the superposition of a staircase function on the Southern Oscillation Index (SOI) after removing the effect of the Pacific Decadal Oscillation (PDO) and the quasi-biennial oscillation (QBO) provides a good fit to the observed HC values. In addition, the annual values of the tropical cyclone count (TCC), during 1900–2006, analyzed with the same procedure as that of HC exhibit similar features to those of the HC values, revealing abrupt shifts in the same years. Furthermore, the application of two shift detection statistical methods determines more accurately the intervals where the shifts occur for each of the three parameters (SSTa, HC, and TCC). Nevertheless, the undersampling of hurricane numbers during early and mid-twentieth century due to the observing capabilities may have contributed to the first rapid shift in hurricane activity.

Keywords

Tropical Cyclone Pacific Decadal Oscillation Southern Oscillation Index Pacific Decadal Oscillation Index Atlantic Tropical Cyclone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe S, Sarlis NV, Skordas ES, Tanaka HK, Varotsos PA (2005) Origin of the usefulness of the natural-time representation of complex time series. Phys Rev Lett 94(17)170601Google Scholar
  2. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteer DM, Pielke RS, Pierrenhumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010CrossRefGoogle Scholar
  3. Bell GD, Chelliah M (2006) Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J Clim 19:590–612CrossRefGoogle Scholar
  4. Belolipetsky PV, Bartsev SI, Degermendzhi AG, Hsu HH, Varotsos CA (2013) Empirical evidence for a double step climate change in twentieth century. http://arxiv.org/ftp/arxiv/papers/1303/1303.1581.pdf
  5. Brooks CEP (1925) The problem of mild polar climates. Q J R Meteorol Soc 51:83–94CrossRefGoogle Scholar
  6. Budyko MI (1962) Some ways of influencing the climate. Meteorol Gidrol 2:3–8Google Scholar
  7. Chambers DP, Merrifield MA, Nerem RS (2012) Is there a 60-year oscillation in global mean sea level? Geophys Res Lett 39, L18607. doi: 10.1029/2012GL052885 Google Scholar
  8. Chang EKM, Guo Y (2007) Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys Res Lett 34, L14801. doi: 10.1029/2007GL030169 CrossRefGoogle Scholar
  9. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118:2494–2505. doi: 10.1002/jgrd.50125 CrossRefGoogle Scholar
  10. Douglass DH (2010) Topology of Earth’s climate indices and phase-locked states. Phys Lett A 374:4164–4168CrossRefGoogle Scholar
  11. Elsner JB, Jagger T, Niu XF (2000) Changes in the rates of North Atlantic major hurricane activity during the 20th century. Geophys Res Lett 27(12):1743–1746CrossRefGoogle Scholar
  12. Elsner JB, Niu XF, Jagger TH (2004) Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J Clim 17(13):2652–2666CrossRefGoogle Scholar
  13. Elsner JB, Tsonis AA, Jagger TH (2006) High-frequency variability in hurricane power dissipation and its relationship to global temperature. Am Meteorol Soc 87:763–768CrossRefGoogle Scholar
  14. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi: 10.1038/nature07234 CrossRefGoogle Scholar
  15. Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688CrossRefGoogle Scholar
  16. Goldenberg SB, Landsea CW, Mestas-Nuρez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479CrossRefGoogle Scholar
  17. Graham NE (1995) Simulation of recent global temperature trends. Science 267(5198):666–671CrossRefGoogle Scholar
  18. Gray WM (2009) Climate change: driven by the ocean—not humans. The Steamboat Institute Conference, Steamboat Springs, Colorado, August 29, 2009. http://tropical.atmos.colostate.edu/Includes/Documents/Presentations/graysteamboat2009.ppt
  19. Humphreys WJ (1932) This cold, cold world. Atlantic:749–54Google Scholar
  20. Kleinbaum DG, Kupper LL (1978) Applied regression analysis and other multivariable methods, Duxbury, Boston, p 556(1978)Google Scholar
  21. Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Commun 2(178). doi: 10.1038/ncomms1186
  22. Kondratyev KY, Grassl H (1993) Global climate change in the context of global change (in Russian). Academic Science, 195 ppGoogle Scholar
  23. Kondratyev KY, Varotsos C (1995) Atmospheric greenhouse effect in the context of global climate change. Il Nuovo Cimento C 18(2):123–151CrossRefGoogle Scholar
  24. Kossin JP, Vimont DJ (2007) A more general framework for understanding Atlantic hurricane variability and trends. Bull Am Meteorol Soc 88:1767–1781CrossRefGoogle Scholar
  25. Kozar ME, Mann ME, Camargo SJ et al (2012) Stratified statistical models of North Atlantic basin-wide and regional tropical cyclone counts. J Geophys Res-Atmos 117, D18103. doi: 10.1029/2011JD017170 CrossRefGoogle Scholar
  26. Landsea CW, Pielke RA Jr, Mestas-Nuρez AM, Knaff JA (1999) Atlantic basin hurricanes: indices of climatic changes. Clim Chang 42:89–129CrossRefGoogle Scholar
  27. Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2010) Impact of duration thresholds on Atlantic tropical cyclone counts. J Clim 23:2508–2519CrossRefGoogle Scholar
  28. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf W, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. PNAS 105:1786–1793. doi: 10.1073/pnas.0705414105 CrossRefGoogle Scholar
  29. Liu Y, Liu CX, Wang HP, Tie XX, Gao ST, Kinnison D, Brasseur G (2009) Atmospheric tracers during the 2003–2004 stratospheric warming event and impact of ozone intrusions in the troposphere. Atmos Chem Phys 9(6):2157–2170CrossRefGoogle Scholar
  30. Lovejoy S (2013) What is climate? Eos Trans Am Geophys Union 94(1):1–2CrossRefGoogle Scholar
  31. Lovejoy S, Schertzer D (2012) Stochastic and scaling climate sensitivities: solar, volcanic and orbital forcings. Geophys Res Lett 39, L11702. doi: 10.1029/2012GL051871 Google Scholar
  32. McCulloch A (2003) Fluorocarbons in the global environment: a review of the important interactions with atmospheric chemistry and physics. J Fluor Chem 123(1):21–29CrossRefGoogle Scholar
  33. Minobe S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686. doi: 10.1029/97GL00504 CrossRefGoogle Scholar
  34. Peavoy D, Franzke C (2010) Bayesian analysis of rapid climate change during the last glacial using Greenland delta O-18 data. Clim Past 6:787–794. doi: 10.5194/cp-6-787-2010 CrossRefGoogle Scholar
  35. Rodionov S (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31, L09204. doi: 10.1029/2004GL019448 Google Scholar
  36. Sabbatelli TA, Mann ME (2007) The influence of climate state variables on Atlantic tropical cyclone occurrence rates. J Geophys Res-Atmos 112(D17), D17114. doi: 10.1029/2007JD008385 CrossRefGoogle Scholar
  37. Sarlis NV, Skordas ES, Lazaridou MS, Varotsos PA (2008) Investigation of seismicity after the initiation of a seismic electric signal activity until the main shock. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 84:331–343Google Scholar
  38. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 60–70 years. Nature 367:723–726CrossRefGoogle Scholar
  39. Solow AR, Beet AR (2008) On the incompleteness of the historical record of North Atlantic tropical cyclones. Geophys Res Lett 35(11), L11803. doi: 10.1029/2008GL033546 CrossRefGoogle Scholar
  40. Tsonis AA, Swanson K, Kravtsov S (2007) A new dynamical mechanism for major climate shifts. Geophys Res Lett 34, L13705. doi: 10.1029/2007gl030288 Google Scholar
  41. Varotsos C (1987) Quasi-stationary planetary waves and temperature reference atmosphere. Meteorol Atmos Phys 37:297–299CrossRefGoogle Scholar
  42. Varotsos C (1989) Connections between the 11-year solar cycle, the QBO and total ozone—comments. J Atmos Terr Phys 51:367–370CrossRefGoogle Scholar
  43. Varotsos C (2002) The southern hemisphere ozone hole split in 2002. Environ Sci Pollut Res 9(6):375–376CrossRefGoogle Scholar
  44. Varotsos C (2003) What is the lesson from the unprecedented event over Antarctica in 2002? Environ Sci Pollut Res 10(2):80–81CrossRefGoogle Scholar
  45. Varotsos C (2004) The extraordinary events of the major, sudden stratospheric warming, the diminutive Αntarctic ozone hole, and its split in 2002. Environ Sci Pollut Res 11(6):405–411CrossRefGoogle Scholar
  46. Varotsos C (2005a) Power-law correlations in column ozone over Antarctica. Int J Rem Sens 26(16):3333–3342Google Scholar
  47. Varotsos C (2005b) Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere. J Geoph Res: Atmospheres 110(D9):D09202. doi: 10.1029/2004JD005397
  48. Varotsos CA, Ondov JM, Cracknell AP, Efstathiou MN, Assimakopoulos MN (2006) Long-range persistence in global Aerosol Index dynamics. Int J Rem Sens 27(16):3593–3603. doi: 10.1080/01431160600617236 Google Scholar
  49. Varotsos C, Efstathiou M (2013) Is there any long-term memory effect in the tropical cyclones? Theor Appl Climatol. 114(3-4)643–650. doi: 10.1007/s00704-013-0875-3
  50. Varotsos C, Franzke CLE, Efstathiou MN, Degermendzhi AG (2013) Evidence for two abrupt warming events of SST in the last century. Theoret Appl Clim: in pressGoogle Scholar
  51. Vecchi GA, Knutson TR (2008) On estimates of historical North Atlantic tropical cyclone activity. J Clim 21(14):3580–3600CrossRefGoogle Scholar
  52. Villarini G, Vecchi GA, Smith JA (2010) Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon Weather Rev 138(7):2681–2705CrossRefGoogle Scholar
  53. Villarini G, Vecchi GA, Smith JA (2012) US landfalling and North Atlantic hurricanes: statistical modeling of their frequencies and ratios. Mon Weather Rev 140(1):44–65CrossRefGoogle Scholar
  54. Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea level rise in twenty-first century projections. J Clim 23(17):4585–4607CrossRefGoogle Scholar
  55. Zhen-Shan and Xian (2007) Multi-scale analysis of global temperature changes and trend of a drop in temperature in the next 20 years. Meteor Atmos Phys 95. http://www.springerlink.com/content/g28u12g2617j5021/

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • C. A. Varotsos
    • 1
  • M. N. Efstathiou
    • 1
  • A. P. Cracknell
    • 2
  1. 1.Climate Research Group, Division of Environmental Physics and Meteorology, Faculty of PhysicsUniversity of AthensAthensGreece
  2. 2.Division of Electronic Engineering and PhysicsUniversity of DundeeDundeeUK

Personalised recommendations