On the uncertainties introduced by land cover data in high-resolution regional simulations

  • Alexander De MeijEmail author
  • G. Zittis
  • T. Christoudias
Original Paper


We investigate the impact of implementing an up-to-date and detailed land cover dataset in high-resolution regional climate simulations. We used the Weather Research Forecast (WRF) model version 3.6.1 on a high horizontal resolution of 5 km × 5 km, with 29 vertical levels, covering mainland Europe. We performed simulations within the year 2050, using future Representative Concentration Pathway 8.5 mid-century projections, for 2 winter (January, February) and the 2 summer months (June, July) to investigate the seasonal dependency of the impact of the land cover datasets on and their interaction with the different meteorological conditions prevailing in summer and winter. We compare simulations using the CORINE Land Cover dataset (100 × 100 m) and the standard United States Geological Survey (USGS) (~ 1 × 1 km) land use data for the same periods. Our analysis shows that simulated meteorological variables (temperature at 2 m, wind speed, sensible and latent heat fluxes and PBL heights) differ significantly between the WRF simulations, linked to the land cover parameterization. We quantify and discuss the modelling uncertainties arising from surface-type classifications and motivate the use of high resolution, and continuously updated land use inventories in climate modelling, especially for future projections. Our findings are particularly important for the summer season and over large urban centers, and we strongly recommend the use of high-quality resolution land use data in modelling experiments studying heat waves in synergy with the urban heat island phenomenon and land–surface interactions.


  1. Arnold D, Schicker I, Seibert P (2010) High-resolution atmospheric modelling in complex terrain for future climate simulations (HiRmod), Vienna Scientific Cluster report 2010. Accessed 4 Aug 2018
  2. Ball FK (1960) Control of inversion height by surface heating. Q J R Meteorol Soc 86:483–494CrossRefGoogle Scholar
  3. Bruyère CL, Monaghan AJ, Steinhoff DF, Yates D (2015) Bias-Corrected CMIP5 CESM data in WRF/MPAS intermediate file format. TN-515+STR, NCAR.
  4. Büttner G, Feranec G, Jaffrain G (2002) Corine land cover update 2000, Technical guidelines. EEA Technical report No 89. Accessed 4 Aug 2018
  5. De Meij A, Vinuesa J-F (2014) Impact of SRTM and Corine land cover data on meteorological parameters using WRF. Atmos Res 143:351–370CrossRefGoogle Scholar
  6. De Meij A, Bossioli E, Vinuesa J-F, Penard C, Price I (2015) The effect of SRTM and Corine Land Cover and SRTM data on calculated gas and PM10 concentrations in WRF-Chem. Atmos Environ 101:173–199Google Scholar
  7. Fraedrich K, Kleidon A, Lunkeit F (1999) A green planet versus a desert world: estimating the effect of vegetation extremes on the atmosphere. J Clim 12:3156–3163CrossRefGoogle Scholar
  8. Gaillard JC (2010) Vulnerability, capacity and resilience: perspectives for climate and development policy. J Int Dev 22:218–232. CrossRefGoogle Scholar
  9. Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40(1):467–490CrossRefGoogle Scholar
  10. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett. Google Scholar
  11. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled ‘online’ chemistry in the WRF model. Atmos Environ 39:6957–6976CrossRefGoogle Scholar
  12. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  13. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103CrossRefGoogle Scholar
  14. IPCC (2014) Climate Change (2014) Synthesis Report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  15. Jacob D, Petersen J, Eggert B, Alias A, Christensen O, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578CrossRefGoogle Scholar
  16. Kim Y, Sartelet K, Raut J-C, Chazatte P (2013) Evaluation of the weather research and forecast/urban model over greater Paris. Bound Layer Meteorol 149:105–132. CrossRefGoogle Scholar
  17. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. CrossRefGoogle Scholar
  18. Mesinger F, Veljovic K (2013) Limited area NWP and regional climate modeling: a test of the relaxation vs Eta lateral boundary conditions. Meteorol Atmos Phys 119:1–16. CrossRefGoogle Scholar
  19. Mesinger F, Veljovic K (2017) Eta vs. sigma: review of past results, Gallus–Klemp test, and large-scale wind skill in ensemble experiments. Meteorol Atmos Phys 129:573–593. CrossRefGoogle Scholar
  20. Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon Weather Rev 137:991–1007CrossRefGoogle Scholar
  21. Pineda N, Jorba O, Jorge J, Baldasano JM (2004) Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: application to a mesoscale meteorological model. Int J Remote Sens 25(1):129–143CrossRefGoogle Scholar
  22. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161CrossRefGoogle Scholar
  23. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Notes-475 + STR.
  24. United Nations, Department of Economic and Social Affairs, Population Division (2015) World urbanization prospects: the 2014 revision (ST/ESA/SER.A/366)Google Scholar
  25. Van den Hurk BJJM (1995) Sparse canopy parameterizations for meteorological models, Ph.D. thesis. Wageningen Agricultural University, WageningenGoogle Scholar
  26. Veljovic K, Rajkovic B, Fennessy MJ, Altshuler EL, Mesinger F (2010) Regional climate modeling: should one attempt improving on the large scales? Lateral boundary condition scheme: Any impact? Meteorol Z 19:237–246. CrossRefGoogle Scholar
  27. Warner TT (2011) Numerical weather and climate prediction. Cambridge University Press, Cambridge, p 526Google Scholar
  28. Zittis G, Hadjinicolaou P, Lelieveld J (2014) Role of soil moisture in the amplification of climate warming in the eastern Mediterranean and the Middle East. Clim Res 59(1):27–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MetClimComerioItaly
  2. 2.Energy, Environment and Water Research Center, The Cyprus InstituteNicosiaCyprus
  3. 3.Computation-Based Science and Technology Research Center, The Cyprus InstituteNicosiaCyprus

Personalised recommendations