Advertisement

Meteorology and Atmospheric Physics

, Volume 131, Issue 3, pp 389–412 | Cite as

Some mean atmospheric characteristics for snowfall occurrences in southern Brazil

  • Jéssica Melo Mintegui
  • Franciano Scremin PuhalesEmail author
  • Nathalie Tissot Boiaski
  • Ernani de Lima Nascimento
  • Vagner Anabor
Original Paper

Abstract

Snowfall is considered a natural disaster in southern Brazil, where a little infrastructure exists up to prevent against the damage it induces, making snowfall forecast a matter of great interest in this region. The present article aims to describe the mean behavior of low, mid, and high atmospheric levels during snowfall occurrences in southern Brazil. Sea-level pressure (SLP), 1000–500 hPa atmospheric thickness, geopotential height at 500 hPa, and wind speed at 200 hPa have been analyzed. One hundred and ninety-six snowfall records from the conventional surface meteorological stations have been selected for the period from 1979 to 2015. The surface synoptic pattern associated with snowfall occurrences has been obtained from ERA-Interim reanalysis data with horizontal spatial resolution of \(0.75^\circ \times 0.75^\circ\) and temporal resolution of 12 h. SLP fields show a high-pressure transient system displacement from the Pacific Ocean to northeastern Argentina. In addition, it is possible to relate snowfall with displacement of a low-pressure system on the coast of southern Brazil. Thickness fields indicate shallow cold air mass intrusions one day before snowfall. Such a cold air continues moving towards low latitudes during consecutive snowfall days and it may be responsible for frost events in climatologically warm regions. Finally, mid and high atmospheric levels show an eastward propagating wave amplified by the Andes.

Keywords

Snowfall Southern Brazil snowfall occurrence Synoptic pattern southern Brazil 

Notes

Acknowledgements

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Universal 422161/2016-0) for financial assistance, \(8^\circ\) Distrito do Instituto Nacional de Meteorologia and Centro de Informações de Recursos Ambientais e Hidrológicos de Santa Catarina (Ciram) for the data provided, the contributions of anonymous reviewers, Michel Kaplan (editor), and Otávio Costa Acevedo for important contributions in this work.

References

  1. Barrett BS, Henderson GR, Werling JS (2015) The influence of the MJO on the intraseasonal variability of Northern Hemisphere spring snow depth. J Clim 28(18):7250–7262.  https://doi.org/10.1175/JCLI-D-15-0092.1 CrossRefGoogle Scholar
  2. Bluestein H (1992) Synoptic-dynamic meteorology in midlatitudes. Oxford University Press, OxfordGoogle Scholar
  3. Cavalcanti IF, Müller GV, Andrade KM, Long MEF (2013) Cold air intrusions over southeastern south america-gfdl model behavior regarding climate simulations in the 20th century and future projections. Glob Planet Change 111:31–42CrossRefGoogle Scholar
  4. Cenad (2014) Anuário brasileiro de desastres naturais: 2013. http://www.mi.gov.br/defesacivil/publicacoes. Accessed 28 Feb 2017
  5. Civil Defense of Santa Catarina (2013). http://www.defesacivil.sc.gov.br/4246-frio-em-santa-catarina-requer-atencao-. Accessed 20 Feb 2017
  6. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  7. Dolif Neto G, Market PS, Becker AE, Pettegrew B, Melick C, Schultz C, Buckley PI, Clark JV, Lupo AR, Holle R, Demetriades N, Barbieri CE (2009) A comparison of two cases of low-latitude thundersnow. Atmósfera 22(3):315–330Google Scholar
  8. Dolif Neto G, Market PS, Pezza AB, Morales Rodriguez CA, Calvetti L, Dias S, Leite P, Escobar GCJ (2016) Thundersnow in Brazil: a case study of 22 July 2013. Atmos Sci Lett 17(1):26–32CrossRefGoogle Scholar
  9. Fortune MA, Kousky VE (1983) Two severe freezes in Brazil: precursors and synoptic evolution. Mon Weather Rev 111(1):181–196CrossRefGoogle Scholar
  10. Fuentes MV (2009) Dinâmica e padrões da precipitação de neve no sul do Brasil. Doutorado em geofísica, Universidade Federal do Rio Grande do Sul, Porto AlegreGoogle Scholar
  11. Garreaud R (2000) Cold air incursions over subtropical south america: mean structure and dynamics. Mon Weather Rev 128(7):2544–2559.  https://doi.org/10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2 CrossRefGoogle Scholar
  12. Grimm AM (2009) Frentes frias sobre o sul do Brasil. In: Cavalcanti IFA, Ao F, Dias MA, Justi MGA, Ferreira NJ (eds) Tempo e clima no Brasil, chapter 17. Oficina de Textos, São Paulo, pp 259–275 (in portuguese) Google Scholar
  13. Heim R Jr, Dewey KF (1984) Circulation patterns and temperature fields associated with extensive snow cover on the North American continent. Phys Geogr 5(1):66–85.  https://doi.org/10.1080/02723646.1984.10642244 CrossRefGoogle Scholar
  14. Heppner PO (1992) Snow versus rain: looking beyond the “magic” numbers. Weather Forecast 7(4):683–691.  https://doi.org/10.1175/1520-0434(1992)007<0683:SVRLBT>2.0.CO;2 CrossRefGoogle Scholar
  15. Johnston EC (1995) Updated satellite technique to forecast heavy snow. Weather Forecast 10(2):219–228.  https://doi.org/10.1175/1520-0434(1995)010<0219:USTTFH>2.0.CO;2 CrossRefGoogle Scholar
  16. Marengo J, Ambrizzi T, Kiladis G, Liebmann B (2002) Upper-air wave trains over the pacific ocean and wintertime cold surges in tropical-subtropical south america leading to freezes in southern and southeastern Brazil. Theor Appl Climatol 73(3):223–242CrossRefGoogle Scholar
  17. Marengo J, Cornejo A, Satyamurty P, Nobre C, Sea W (1997a) Cold surges in tropical and extratropical south america: the strong event in June 1994. Mon Weather Rev 125(11):2759–2786CrossRefGoogle Scholar
  18. Marengo JA, Nobre CA, Culf AD (1997b) Climatic impacts of “friagens” in forested and deforested areas of the amazon basin. J Appl Meteorol 36(11):1553–1566.  https://doi.org/10.1175/1520-0450(1997)036<1553:CIOFIF>2.0.CO;2 CrossRefGoogle Scholar
  19. Mintegui JM, Puhales FS, de Lima Nascimento E, Weber TM, Silva GG, Anabor V, Dal Piva E, de Souza Cruz G (2015) Multi-layer atmospheric analysis during snow episodes in southern Brazil. Ciência e Natura 37(2):356.  https://doi.org/10.5902/2179460X17350 (in portuguese) CrossRefGoogle Scholar
  20. Müller GV, Berri GJ (2007) Atmospheric circulation associated with persistent generalized frosts in central-southern south america. Mon Weather Rev 135(4):1268–1289CrossRefGoogle Scholar
  21. Müller GV, Ferraz SET, Ambrizzi T (2009) Propagacão das ondas de rossby nos invernos de máxima freqüência de ocorrência de geadas na pampa úmida. Rev Bras Meteorol 24(1):56–62.  https://doi.org/10.1590/S0102-77862009000100006 (in portuguese) CrossRefGoogle Scholar
  22. Müller GV, Gan MA, Dal Piva E (2017) Energetics of wave propagation leading to frost events in south america: extratropical latitudes. Atmos Sci Lett 18(8):342–348CrossRefGoogle Scholar
  23. Nimer E (1979) Climatologia do Brasil. Secretaria de Planejamento da Presidência da República, Fundação Instituto Brasileiro de Geografia e Estatística, Diretoria Técnica, Superintendência de Recursos Naturais e Meio Ambiente, Rio de Janeiro (in portuguese) Google Scholar
  24. Peixoto JP, Oort AH (1992) Physics of climate. Springer, New YorkCrossRefGoogle Scholar
  25. Pezza AB, Ambrizzi T (2005) Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical south america. Int J Climatol 25(2):215–241CrossRefGoogle Scholar
  26. Vera CS, Vigliarolo PK (2000) A diagnostic study of cold-air outbreaks over south america. Mon Weather Rev 128(1):3–24CrossRefGoogle Scholar
  27. Wilks D (2006) Statistical methods in the atmospheric sciences, 2nd edn. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jéssica Melo Mintegui
    • 1
  • Franciano Scremin Puhales
    • 1
    Email author
  • Nathalie Tissot Boiaski
    • 2
  • Ernani de Lima Nascimento
    • 1
  • Vagner Anabor
    • 1
  1. 1.Grupo de Modelagem AtmosféricaUniversidade Federal de Santa Maria (GruMA-UFSM)Santa MariaBrazil
  2. 2.Grupo de Pesquisa ClimáticaUniversidade Federal de Santa Maria (GPC-UFSM)Santa MariaBrazil

Personalised recommendations