Advertisement

Meteorology and Atmospheric Physics

, Volume 131, Issue 1, pp 29–53 | Cite as

On the coupling of convective updrafts prior to secondary eyewall formation in Hurricane Katrina (2005)

  • Jose M. Garcia-Rivera
  • Yuh-Lang LinEmail author
Original Paper
  • 132 Downloads

Abstract

Hurricane Katrina (2005) was simulated by the Advanced Research Weather Research and Forecasting model to understand the mechanism of a secondary eyewall formation (SEF) prior to its last landfall. The storm underwent a series of structural changes that were deemed necessary for the concentric cycle to begin, which included (1) increased rainband activity outside the primary eyewall in the hours before, mostly related to an intensifying main feeder band, (2) close to initiation of the SEF, an updraft (explained by a pre-existing hypothesis) emerged outside the primary eyewall near the top of the boundary layer (BL), (3) this updraft then intensified and extended both upward and outward, while the storm intensified and approached SEF, (4) eventually, the updraft coupled with the upward motion associated with rainband-related convection near the SEF radius, and (5) once the alignment occurred, the deep updraft quickly organized to support deep convection that led to SEF within hours of initiation. The coupling of updrafts emanating from the BL with the environmental upward motion associated with the pre-existing rainband activity is proposed to be the key mechanism for the SEF initiation in this case.

Abbreviations

AHW

Advanced Hurricane WRF

ARW

Advanced Research WRF

BL

Boundary layer

BV

Bogus vortex

ERC

Eyewall replacement cycle

HMW12

Huang et al. (2012)

LH

Latent heat

M

Absolute angular momentum

MM5

Fifth-generation mesoscale model

ORB

Outer rainband

PBL

Planetary boundary layer

PE

Primary eyewall

PV

Potential vorticity

PW

Precipitable water

RAINEX

The Hurricane Rainband and Intensity Change Experiment

RRTM

Rapid radiative transfer model

SE

Secondary eyewall

SEF

Secondary eyewall formation

SMCZ

Secondary maximum convergence zone

SST

Sea surface temperature

TC

Tropical cyclone

TM08

Terwey and Montgomery (2008)

VHT

Vortical hot tower

VRW

Vortex Rossby wave

WRF

Weather research and forecast model

Notes

Acknowledgements

Comments by Drs. James Kossin, Ademe Mekonnen, Yevgenii Rastigejev, Jing Zhang, and three reviewers are highly appreciated. This research was supported by the National Science Foundation Awards AGS-1265783, HRD-1036563, OCI-1126543, and CNS-1429464.

References

  1. Abarca SF (2011) Secondary eyewall formation in high resolution, realistic hurricane simulations, Ph.D. thesis. University of California Los Angeles, Los AngelesGoogle Scholar
  2. Abarca SF, Corbosiero KL (2011) Secondary eyewall formation in WRF simulations of hurricanes Katrina and Rita (2005). Geophys Res Lett 38:L07802. doi: 10.1029/2011GL047015 CrossRefGoogle Scholar
  3. Abarca SF, Montgomery MT (2013) Essential dynamics of secondary eyewall formation. J Atmos Sci 70:3216–3230CrossRefGoogle Scholar
  4. Abarca SF, Montgomery MT (2014) Departures from axisymmetric balance dynamics during secondary eyewall formation. J Atmos Sci 71:3723–3738CrossRefGoogle Scholar
  5. Bell M, Montgomery MT, Lee W (2012) An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J Atmos Sci. doi: 10.1175/JAS-D-11-0167.1 CrossRefGoogle Scholar
  6. Black ML, Willoughby HE (1992) the concentric eyewall cycle of Hurricane Gilbert. Mon Weather Rev 120:947–957CrossRefGoogle Scholar
  7. Chen Y, Yau MK (2001) Spiral bands in a simulated hurricane. Part I: vortex Rossby wave verification. J Atmos Sci 58:2128–2145CrossRefGoogle Scholar
  8. Davis CA, Wang W, Chen SS, Chen Y, Corbosiero K, DeMaria M, Dudhia J, Holland G, Klemp J, Michalakes J, Reeves H, Rotunno R, Snyder C, Xiao Q (2008) Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon Weather Rev 136:1990–2005CrossRefGoogle Scholar
  9. Didlake AC Jr, Houze RA Jr (2013) Convective-scale variations in the inner-core rainbands of a tropical cyclone. J Atmos Sci 70:504–523CrossRefGoogle Scholar
  10. Fierro AO, Rogers RF, Marks FD, Nolan DS (2009) The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon Weather Rev 137:3717–3743CrossRefGoogle Scholar
  11. Fredrick S, Davis C, Gill D, Low-Nam S (2009) Bogussing of tropical cyclones in WRF version 3.1. National Center for Atmospheric Research, Boulder. http://www.mmm.ucar.edu/wrf/users/workshops/WS2009/abstracts/P1-05.pdf. Retrieved 30 Jan 2014
  12. Hawkins JD, Helveston M (2004) Tropical cyclone multiple eyewall characteristics. In: 26th conference on hurricanes and tropical meteorology, preprints AMS, Miami, pp 276–277Google Scholar
  13. Hence DA, Houze RA Jr (2011) Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM precipitation radar. J Atmos Sci. doi: 10.1175/JAS-D-11-0119.1 CrossRefGoogle Scholar
  14. Houze RA Jr (2010) Clouds in tropical cyclones. Mon Weather Rev 138:293–344CrossRefGoogle Scholar
  15. Houze RA Jr et al (2006) The hurricane rainband and intensity change experiment observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull Am Meteorol Soc 87:1503–1521CrossRefGoogle Scholar
  16. Houze RA Jr, Chen SS, Smull BF, Lee W-C, Bell MM (2007) Hurricane intensity and eyewall replacement. Science 315(5816):1235–1239. doi: 10.1126/science.1135650 CrossRefGoogle Scholar
  17. Huang Y-H, Montgomery MT, Wu CC (2012) Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: axisymmetric dynamical processes. J Atmos Sci 69:662–674CrossRefGoogle Scholar
  18. Kepert JD (2001) The dynamics of boundary layer jets within the tropical cyclone core. Part I: linear theory. J Atmos Sci 58:2469–2484CrossRefGoogle Scholar
  19. Kepert JD (2012) Choosing a boundary layer parameterization for tropical cyclone modelling. Mon Weather Rev 140:1427–1445. doi: 10.1175/MWR-D-11-00217.1 CrossRefGoogle Scholar
  20. Kepert JD (2013) How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J Atmos Sci 70:2808–2830CrossRefGoogle Scholar
  21. Kepert JD, Nolan DS (2014) Analysis of a simulated tropical cyclone eyewall replacement cycle. In: 31st conference on hurricanes and tropical meteorology, preprints. AMS, San DiegoGoogle Scholar
  22. Knabb RD, Rhome JR, Brown DP (2005) Hurricane Katrina Tropical Cyclone Report. National Hurricane Center, Miami. http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf. Retrieved 19 Sept 2012
  23. Kossin JP, Sitkowski M (2009) An objective model for identifying secondary eyewall formation in hurricanes. Mon Weather Rev 137:876–892CrossRefGoogle Scholar
  24. Kuo H-C, Lin L-Y, Chang C-P, Williams RT (2004) The formation of concentric vorticity structures in typhoons. J Atmos Sci 61:2722–2734CrossRefGoogle Scholar
  25. Kuo H-C et al (2008) Vortex interactions and barotropic aspects of concentric eyewall formation. Mon Weather Rev 136:5183–5198CrossRefGoogle Scholar
  26. Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Appl Meteorol 22:1065–1092CrossRefGoogle Scholar
  27. Martinez Y, Brunet G, Yau MK (2010) On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J Atmos Sci 67:3253–3268CrossRefGoogle Scholar
  28. Martinez Y, Brunet G, Yau MK, Wang X (2011) On the dynamics of concentric eyewall genesis: space-time empirical normal modes diagnosis. J Atmos Sci 68:457–476CrossRefGoogle Scholar
  29. Menelaou K, Yau MK, Martinez Y (2012) On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Geophys Res Lett 39:L04801. doi: 10.1029/2011GL050699 CrossRefGoogle Scholar
  30. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  31. Molinari J, Skubis S (1985) Evolution of the surface wind field in an intensifying tropical cyclone. J Atmos Sci 42:2865–2879CrossRefGoogle Scholar
  32. Molinari J, Vollaro D (1989) External influences on hurricane intensity. Part I: outflow layer eddy angular momentum fluxes. J Atmos Sci 46:1093–1105CrossRefGoogle Scholar
  33. Montgomery MT, Kallenbach RJ (1997) A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Q J R Meteorol Soc 123:435–465CrossRefGoogle Scholar
  34. Montgomery MT, Abarca SF, Smith RK, Wu CC, Huang YH (2014) Comments on “How does the boundary layer contributes to eyewall replacement cycles in axisymmetric tropical cyclones?” by J. D. Kepert. J Atmos Sci 71:4682–4691CrossRefGoogle Scholar
  35. Muramatsu T (1986) The structure of polygonal eye of a typhoon. J Meteorol Soc Jpn 64:913–921CrossRefGoogle Scholar
  36. Nong S, Emanuel KA (2003) A numerical study of the genesis of concentric eyewalls in hurricanes. Q J R Meteorol Soc 129:3323–3338CrossRefGoogle Scholar
  37. Ooyama KV (1969) Numerical simulation of the life cycle of tropical cyclones. J Atmos Sci 26:3–40CrossRefGoogle Scholar
  38. Qiu X, Tan Z-M (2013) The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J Atmos Sci 70:953–974CrossRefGoogle Scholar
  39. Qiu X, Tan Z-M, Xiao Q (2010) The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon Weather Rev 138:2092–2109CrossRefGoogle Scholar
  40. Rozoff CM, Schubert WH, McNoldy BD, Kossin JP (2006) Rapid filamentation zones in intense tropical cyclones. J Atmos Sci 63:325–340CrossRefGoogle Scholar
  41. Rozoff CM, Nolan DS, Kossin JP, Zhang F, Fang J (2012) The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J Atmos Sci 69:2621–2643CrossRefGoogle Scholar
  42. Schubert WH, Montgomery MT, Taft RK, Guinn TA, Fulton SR, Kossin JP, Edwards JP (1999) Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J Atmos Sci 56:1197–1223CrossRefGoogle Scholar
  43. Sitkowski M, Kossin JP, Rozoff CM (2011) Intensity and structure changes during hurricane eyewall replacement cycles. Mon Weather Rev 139:3829–3847CrossRefGoogle Scholar
  44. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475?STRGoogle Scholar
  45. Sun YQ, Jiang Y, Tan B, Zhang F (2013) The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J Atmos Sci 70:3818–3837CrossRefGoogle Scholar
  46. Tao W-K et al (2011) The impact of microphysical schemes on hurricane intensity and track. Asia Pac J Atmos Sci 47:1–16CrossRefGoogle Scholar
  47. Terwey WD, Montgomery MT (2008) Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J Geophys Res 113:D12112. doi: 10.1029/2007JD008897 CrossRefGoogle Scholar
  48. Wang Y (2002) Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: the role in tropical cyclone structure and intensity changes. J Atmos Sci 59:1239–1262CrossRefGoogle Scholar
  49. Wang X, Ma Y, Davidson NE (2013) SEFormation and eyewall replacement cycles in a simulated hurricane: effect of the net radial force in the hurricane boundary layer. J Atmos Sci 70:1317–1341CrossRefGoogle Scholar
  50. Willoughby HE (1998) Tropical cyclone eye thermodynamics. Mon Weather Rev 126:3053–3067CrossRefGoogle Scholar
  51. Willoughby HE, Closs JA, Shoreibah MG (1982) Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J Atmos Sci 39:395–411CrossRefGoogle Scholar
  52. Wu C-C, Huang Y-H, Lien G-Y (2012) Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon Weather Rev 140:506–527CrossRefGoogle Scholar
  53. Xiao Q, Chen L, Zhang X (2009) Evaluations of BDA scheme using the advanced research WRF (ARW) model. J Appl Meteorol Climatol 48:680–689CrossRefGoogle Scholar
  54. Zhou X, Wang B (2011) Mechanism of concentric eyewall replacement cycles and associated intensity change. J Atmos Sci 68:972–988CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.I.M. Systems GroupRockvilleUSA
  2. 2.Department of Energy and Environmental SystemsNorth Carolina A&T State UniversityGreensboroUSA
  3. 3.Department of PhysicsNorth Carolina A&T State UniversityGreensboroUSA

Personalised recommendations