Meteorology and Atmospheric Physics

, Volume 131, Issue 1, pp 81–88 | Cite as

Appearance of the persistently low tropopause temperature and ozone over the Bay of Bengal region

  • Shipra JainEmail author
  • A. R. Jain
  • T. K. Mandal
Original Paper


This paper reports the observation of persistently low tropopause temperatures (100 hPa temperatures, T 100) and ozone at 100 hPa throughout the year as compared to the corresponding zonal mean values over the Bay of Bengal (BOB) region. The long term mean T 100 (i.e., from January 2006–December 2009) over the BOB is ~2.2 K lower than the zonal mean values over this region. The multiple linear regression analysis has been carried out to study the role of convection and ozone in giving rise to the persistently low T 100 over the BOB. Results show that the low ozone mixing ratios contributes ~1.2 K and convection contributes ~0.35 K to the persistently low T 100. The contribution of convection to the persistent low T 100 is mainly during the boreal monsoon season.



The authors gratefully acknowledge Goddard Earth Sciences Data and Information Services Centre for providing the Aura MLS WVMR and temperature data. The ISCCP-D1 data were obtained from the International Satellite Cloud Climatology Project data archives, ozone (Nadir) data were obtained from the Aura TES data archives at the NASA Langley Research Center and OLR data are obtained from the ESRL-NOAA website. The authors are thankful to the anonymous reviewer for his valuable suggestions. The authors are also thankful to Head, NCMRWF for his support in completion of this work. This work is funded by ISRO/DOS under CAWSES India Phase-II program.


  1. Dessler AE, Sherwood SC (2004) Effect of convection on the summertime extratropical lower stratosphere. J Geophys Res 109:D23301. doi: 10.1029/2004JD005209 CrossRefGoogle Scholar
  2. Dethof A, O’Neill A, Slingo J, Smit H (1999) A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Q J Roy Meteorol Soc 125:1079–1106CrossRefGoogle Scholar
  3. Dunkerton TJ (1995) Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions. J Geophys Res 100:16675–16688CrossRefGoogle Scholar
  4. Folkins IM, Loewenstein M, Podolske J, Oltmans SJ, Proffitt M (1999) A barrier to vertical mixing at 14 km in the tropics: evidence from ozonesondes and aircraft measurements. Geophys Res Lett 104:22095–22102CrossRefGoogle Scholar
  5. Forster PMF, Shine KP (1999) Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling. Geophys Res Lett 26:3309–3312CrossRefGoogle Scholar
  6. Fueglistaler S, Dessler AE, Dunkerton TJ, Folkins I, Fu Q, Mote PW (2009) Tropical tropopause layer. Rev Geophys 47:RG1004. doi: 10.1029/2008RG000267 CrossRefGoogle Scholar
  7. Gettelman A, Randel WJ, Wu F, Massie ST (2002a) Transport of water vapor in the tropical tropopause layer. Geophys Res Lett 29:1009. doi: 10.1029/2001GL013818 CrossRefGoogle Scholar
  8. Gettelman A, Salby ML, Sassi F (2002b) Distribution and influence of convection in the tropical tropopause region. J Geophys Res 107(D10):4080. doi: 10.1029/2001JD001048 CrossRefGoogle Scholar
  9. Hadley G (1735) Concerning the cause of the general trade winds. Phil Trans Roy Soc Lond 39:58–63CrossRefGoogle Scholar
  10. Herman R, Osterman G (editors), Boxe C, Bowman K, Cady-Pereira K, Clough T, Eldering A, Fisher B, Fu D, Herman R, Jacob D, Jourdain L, Kulawik S, Lampel M, Li Q, Logan J, Luo M, Megretskaia I, Nassar R, Osterman G, Paradise S, Payne V, Revercomb H, Richards N, Shephard M, Tobin D, Turquety S, Vilnrotter F, Worden H, Worden J, Zhang L (2012) Earth observing system (EOS) tropospheric emission spectrometer (TES) data validation report (Version F06_08, F06_09 data), Version 5.0, Jet Propulsion Laboratory Internal Report, D-33192Google Scholar
  11. Highwood EJ, Hoskins BJ (1998) The tropical tropopause. Q J R Meteorol Soc 124:1579–1604CrossRefGoogle Scholar
  12. Jackson DR, Driscoll SJ, Highwood EJ, Harries JE, Russell JM III (1998) Troposphere to stratosphere transport at low latitudes as studied using HALOE observations of water vapour 1992–1997. Q J R Meteorol Soc 124:169–192Google Scholar
  13. Jain AR, Panwar V, Mandal TK, Rao VR, Goel A, Gautam R, Das SS, Dhaka SK (2010) Mesoscale convection system and occurrence of extreme low tropopause: observations over Asian summer monsoon region. Ann Geophys 28:927–940CrossRefGoogle Scholar
  14. Jain AR, Panwar V, Johny CJ, Mandal TK, Rao VR, Gautam R, Dhaka SK (2011) Occurrence of extremely low cold point tropopause temperature during summer monsoon season: ARMEX campaign and CHAMP and COSMIC satellite observations. J Geophys Res 116:D03102. doi: 10.1029/2010JD014340 CrossRefGoogle Scholar
  15. Jain S, Jain AR, Mandal TK (2013) Role of convection in hydration of tropical UTLS: implication of AURA MLS long-term observations. Ann Geophys 31:967–981. doi: 10.5194/angeo-31-967-2013 CrossRefGoogle Scholar
  16. Jain S, Jain AR, Mandal TK (2014) Dry phase of tropical lower stratospheric water vapor: role of BDC, convection and ozone variability. J Atmos Sol-Terr Phys 121:257–270CrossRefGoogle Scholar
  17. Jain S, Jain AR, Mandal TK (2015) Impact of monsoon-associated deep-penetrating clouds on the hydration of the tropical upper troposphere. Atmos Sci Lett 16:38–43CrossRefGoogle Scholar
  18. Kumar AH, Ratnam MV, Sunilkumar SV, Parameswaran K, Murthy BK (2015) Role of deep convection on the tropical tropopause characteristics at sub-daily scales over the South India monsoon region. Atmos Res 161:14–24CrossRefGoogle Scholar
  19. Lambert A, Read WJ, Livesey NJ, Santee ML, Manney GL, Froidevaux L, Wu DL, Schwartz MJ, Pumphrey HC, Jimenez C, Nedoluha GE, Cofield RE, Cuddy DT, Daffer WH, Drouin BJ, Fuller RA, Jarnot RF, Knosp BW, Pickett HM, Perun VS, Snyder WV, Stek PC, Thurstans RP, Wagner PA, Waters JW, Jucks KW, Toon GC, Stachnik RA, Bernath PF, Boone CD, Walker KA, Urban J, Murtagh D, Elkins JW, Atlas E (2007) Validation of the Aura microwave limb sounder middle atmosphere water vapor and nitrous oxide measurements. J Geophys Res 112:D24S36. doi: 10.1029/2007JD008724 CrossRefGoogle Scholar
  20. Li Q, Jiang JH, Wu DL, Read WG, Livesey NJ, Waters JW, Zhang Y, Wang B, Filipiak MJ, Davis CP, Turquety S (2005) Trapping of Asian pollution by the Tibetan anticyclone: a global CTM simulation compared with EOS MLS observations. Geophys Res Lett 32:L14826Google Scholar
  21. Livesey NJ, Read WG, Lambert LF, Manney GL, Pumphrey HC, Santee ML, Schwartz MJ, Wang S, Cofeld RE, Cuddy DT, Fuller RA, Jarnot RF, Jiang JH, Knosp BW, Stek PC, Wagner PA, Wu DL (2011) EOS Aura MLS, Version 3.3 Level 2 data quality and description document, Technical report, Jet Propulsion Laboratory, D-33509Google Scholar
  22. Mote P, Rosenlof K, Mclntyre M, Carr E, Gille J, Holton J, Kinnersley J, Pumphrey H, Russell J III, Waters J (1996) An atmospheric tape recorder: the imprint of tropical tropopause temperatures on stratospheric water vapor. J Geophys Res 101(D2):3989–4006CrossRefGoogle Scholar
  23. Panwar V, Jain AR, Goel A, Mandal TK, Rao VR, Dhaka SK (2012) Some features of water vapor mixing ratio in tropical upper troposphere and lower stratosphere: role of convection. Atmos Res 108:86–103. doi: 10.1016/j.atmosres.2012.02.003 CrossRefGoogle Scholar
  24. Park M, Randel WJ, Gettelman A, Massie ST, Jiang JH (2007) Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J Geophys Res 112:D16309. doi: 10.1029/2006JD008294 CrossRefGoogle Scholar
  25. Randel WJ, Park M (2006) Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with atmospheric infrared sounder (AIRS). J Geophys Res 111:D12314. doi: 10.1029/2005JD006490 CrossRefGoogle Scholar
  26. Randel WJ, Wu F, Gettelman A, Russell JM III, Jawodny JM, Oltmans SJ (2001) Seasonal variation of water vapor in the lower stratosphere observed in halogen occultation experiment data. J Geophys Res 106:14313–14325CrossRefGoogle Scholar
  27. Randel WJ, Wu F, Oltmans SJ, Rosenlof K, Nedoluha GE (2004) Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J Atmos Sci 61:2133–2148CrossRefGoogle Scholar
  28. Randel WJ, Zhang K, Fu R (2015) What controls stratospheric water vapor in the NH summer monsoon regions? J Geophys Res Atmos 120(15):7988–8001CrossRefGoogle Scholar
  29. Ricaud P, Barret B, Attié JL, Motte E, Flochmoën EL, Teyssèdre H, Peuch VH, Livesey N, Lambert A, Pommereau JP (2007) Impact of land convection on troposphere-stratosphere exchange in the tropics. Atmos Chem Phys 7(21):5639–5657CrossRefGoogle Scholar
  30. Rosenlof KH, Tuck AF, Kelly KK, Russell JM III, McCormick MP (1997) Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J Geophys Res 102:13213–13234CrossRefGoogle Scholar
  31. Schwartz MJ, Lambert A, Manney GL, Read WG, Livesey NJ, Froidevaux L, Ao CO, Bernath PF, Boone C, Cofield RE, Daffer WH (2008) Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J Geophys Res 113:D15S11. doi: 10.1029/2007JD008783 CrossRefGoogle Scholar
  32. Solomon S, Garcia RR, Rowland FS, Wuebles DJ (1986) On the depletion of Antarctic ozone. Nature 321:755–758CrossRefGoogle Scholar
  33. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327(5970):1219–1223CrossRefGoogle Scholar
  34. Vernier JP, Fairlie TD, Natarajan M, Wienhold FG, Bian J, Martinsson BG, Crumeyrolle S, Thomason LW, Bedka KM (2015) Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J Geophys Res: Atmos 120(4):1608–1619Google Scholar
  35. Wild M, Roeckner E (2006) Radiative fluxes in the ECHAM5 general circulation model. J Clim 19:3792–3809. doi: 10.1175/JCLI3823.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.National Physical LaboratoryNew DelhiIndia
  2. 2.National Centre for Medium Range Weather Forecasting (NCMRWF)Ministry of Earth SciencesNoidaIndia
  3. 3.NoidaIndia

Personalised recommendations