Meteorology and Atmospheric Physics

, Volume 130, Issue 4, pp 473–484 | Cite as

Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar

  • Fernando Oñate-Valdivieso
  • Andreas Fries
  • Katherine Mendoza
  • Victor Gonzalez-Jaramillo
  • Franz Pucha-Cofrep
  • Rütger Rollenbeck
  • Jörg Bendix
Original Paper


This paper focuses on the analysis of precipitation patterns, using a Local Area Weather Radar to collect information about the precipitation distribution in an Andean region of southern Ecuador (cities of Loja, Zamora and Catamayo). 54 representative events were selected to develop daily precipitation maps and to obtain their relevant characteristics, which were related to the topography and the season. The results showed that a strong correlation between the areas covered by precipitation (R A coefficient) and the season exists. In general, humid air masses come from the east (Amazon Basin), but during the main rainy season (December to April), humidity also frequently enters the study region from the west (Pacific Ocean). The rainy season is characterized by convective precipitation, associated with higher evaporation rates during austral summer. The relatively dry season is formed between May and November, but considerable precipitation amounts are registered, too, due to advective moisture transport from the Amazon Basin, a result of the predominant tropical easterlies carrying the humidity up the eastern escarpment of the Andes, generally following the natural course of the drainage systems.


  1. Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Bell MM et al (2015) The Hawaiian Educational Radar Opportunity (HERO). Bull Am Meteorol Soc 96:2167–2181. doi: 10.1175/BAMS-D-14-00126.1 CrossRefGoogle Scholar
  3. Bendix J, Rollenbeck R, Palacios WE (2004) Cloud detection in the tropics-a suitable tool for climate ecological studies in the high mountains of Ecuador. Int J Remote Sensing 25:4521–4540CrossRefGoogle Scholar
  4. Bendix J, Trachte K, Cermak J, Rollenbeck R, Naub T (2009) Formation of convective clouds at the foothills of the tropical eastern Andes (South Ecuador). JAMC 48(8):1682–1695Google Scholar
  5. Bendix J, Fries A, Zárate J, Trachte K, Rollenbeck R, Pucha-Cofrep F, Paladines R, Palacios I, Orellana J, Oñate-Valdivieso F, Naranjo C, Mendoza L, Mejia D, Guallpa M, Gordillo F, González-Jaramillo V, Dobbermann M, Celleri R, Carrillo C, Araque A, Achilles S (2017) RADARNET-SUR. Bull Am Meteorol Soc, FIRST RAIN RADAR NETWORK IN TROPICAL HIGH MOUNTAINS. doi: 10.1175/BAMS-D-15-00178.1 Google Scholar
  6. Davis Instruments (2015) Wireless Vantage Pro2™ and Vantage Pro2™ Plus Stations, USA. Accessed 13 Jan 2016
  7. Delrieu G, Wijbrans A, Boudevillain B, Faure D, Bonnifait L, Kirstetter PE (2014) Geostatistical radar-raingauge merging: a novel method for the quantification of the rain estimation accuracy. Adv Water Resour 71(2014):110–124. doi: 10.1016/j.advwatres.2014.06.005 CrossRefGoogle Scholar
  8. Ecuavisa (2015) Loja: Ocho casa se inundaron y sus propietarios evacuados. Accessed 01 Jan 2017
  9. El Comercio (2015) Lluvias en Loja dejan seis fallecidos y viviendas inundadas. Accessed 01 Jan 2017
  10. Emck P (2007) A climatology of South Ecuador. Dissertation, Friedrich-Alexander Universität Erlangen, GermanyGoogle Scholar
  11. Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51(5):3459–3475CrossRefGoogle Scholar
  12. Foresti L, Pozdnoukhov A (2012) Exploration of Alpine orographic precipitation patterns with radar image processing and clustering techniques. Meteorol Appl 19:407–419CrossRefGoogle Scholar
  13. Fries A, Rollenbeck R, Göttlicher D, Nauß T, Homeier J, Peters T, Bendix J (2009) Thermal structure of a megadiverse mountain ecosystem in southern Ecuador, and its regionalization. Erdkunde 63(4):321–335CrossRefGoogle Scholar
  14. Fries A, Rollenbeck R, Nauß T, Peters T, Bendix J (2012) Near surface air humidity in a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. Agric For Met 152:17–30CrossRefGoogle Scholar
  15. Fries A, Rollenbeck R, Bayer F, Gonzalez V, Oñate-Valivieso F, Peters T, Bendix J (2014) Catchment precipitation processes in the San Francisco valley in southern Ecuador: combined approach using high-resolution radar images and in situ observations. Meteorol Atmos Phys 126:13–29CrossRefGoogle Scholar
  16. Gabella M, Notarpietro R (2004) Improving operational measurement of precipitation using radar in mountainous terrain—Part I: methods. IEEE Geosci Remote Sens Lett 1(2):78–83CrossRefGoogle Scholar
  17. Germann U, Joss J (2004) Operational measurement of precipitation in mountainous terrain. In: Meischner P (ed) Weather radar: principles and advanced applications. Springer, Berlin, pp 52–77CrossRefGoogle Scholar
  18. Germann U, Galli G, Boscacci M, Bolliger M (2006) Radar precipitation measurement in a mountainous region. Q J R Meteorol Soc 132(618):1669–1692CrossRefGoogle Scholar
  19. Germann U, Berenguer M, Sempere-Torres D, Zappa M (2009) REAL—ensemble radar precipitation estimation for hydrology in a mountainous region. QJR Meteorol Soc 135:445–456CrossRefGoogle Scholar
  20. Houze RA Jr, James CN, Medina S (2001) Radar observations of precipitation and airflow on the Mediterranean side of the Alps: Autumn 1998 and 1999. QJR Meteorol Soc 127:2537–2558CrossRefGoogle Scholar
  21. INAMHI (2009) Anuarios Meteorológicos. Quito, Ecuador. Accessed 01 Jan 2016
  22. Jensen NE (2002) X-band local area weather radar—preliminary calibration results. Water Sci Technol 45:135–138CrossRefGoogle Scholar
  23. Jensen NE (2004) Local area weather radar documentation. DHI/LAWR/TN 2/10-2004. V 3.0, DHI Institute for the water environmentGoogle Scholar
  24. Jensen NE, Pedersen L (2005) Spatial variability of rainfall: Variations within a single radar pixel. Atmos Res 77:269–277CrossRefGoogle Scholar
  25. Johansson B, Chen D (2005) Estimation of areal precipitation for runoff modelling using wind data: a case study in Sweden. Clim Res 29:53–61CrossRefGoogle Scholar
  26. Krajewski WF, Kruger A, Smith JA, Lawrence R, Gunyon C, Goska R, Steiner M (2011) Towards better utilization of NEXRAD data in hydrology: an overview of Hydro-NEXRAD. J Hydroinform 13(2):255–266CrossRefGoogle Scholar
  27. Lengfeld K, Clemens M, Münster H, Ament F (2014) Performance of high-resolution X-band weather radar networks—the PATTERN example. Atmos Meas Tech 7:4151–4166CrossRefGoogle Scholar
  28. Ochoa-Cueva P, Fries A, Montesinos P, Rodríguez-Díaz JA, Boll J (2015) Spatial estimation of soil erosion risk by land-cover change in the Andes of southern Ecuador. Land Degrad Dev 26:565–573CrossRefGoogle Scholar
  29. Ochoa-Cueva P, Fries A, Mejia D, Burneo J, Ruíz-Sinoga J, Cerdà A (2016) Climate, landforms and soil erosion processes in a semiarid basin of the Ecuadorian Andes. CATENA 140:31–42CrossRefGoogle Scholar
  30. Panziera L, Germann U (2010) The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar. QJR Meteorol Soc 136:222–238CrossRefGoogle Scholar
  31. Pedersen L, Jensen NE, Madsen H (2010) Calibration of local area weather radar—identifying significant factors affecting the calibration. Atmos Res 97(1–2):129–143CrossRefGoogle Scholar
  32. Richter M (2003) Using plant functional types and soil temperatures for eco-climatic interpretation in southern Ecuador. Erdkunde 57:161–181CrossRefGoogle Scholar
  33. Rollenbeck R, Bendix J (2006) Experimental calibration of a cost-effective X-band weather radar for climate ecological studies in southern Ecuador. Atmos Res 79(3–4):296–316CrossRefGoogle Scholar
  34. Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99(2):277–289CrossRefGoogle Scholar
  35. Villarini G, Krajewski WF (2010) Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv Geophys 31(1):107–129CrossRefGoogle Scholar
  36. Vuille M, Raymond S, Keimig B, Keimig F (2000) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res 105:12447–12460CrossRefGoogle Scholar
  37. Windhorst D, Waltz T, Timbe E, Frede HG, Breuer L (2013) Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol Earth Syst Sci 17:409–419CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Departamento de Geología, Minas e Ingeniería Civil (DGMIC), Hidrología y Climatología Working GroupUniversidad Técnica Particular de LojaLojaEcuador
  2. 2.Laboratory for Climatology and Remote Sensing (LCRS), Faculty of GeographyUniversity of MarburgMarburgGermany

Personalised recommendations