Advertisement

The emergence of animal models of chronic pain and logistical and methodological issues concerning their use

  • Terence J. CoderreEmail author
  • André Laferrière
Neurology and Preclinical Neurological Studies - Review Article
  • 89 Downloads

Abstract

This paper examines the development of and some logistical and methodological issues surrounding the use of animal models of chronic pain. The first section addresses the emergent move towards mechanism-based and disease-related animal models of chronic pain that has accelerated since the late 1980s following publication of Bennett and Xie’s (Pain 33:87–107, 1998) paper on chronic constriction injury of the sciatic nerve and Stein et al.’s (Pharmacol Biochem Behav 31:445–451, 1988) paper on unilateral hind paw inflammation with complete Freund’s adjuvant. The discussion covers vast areas of chronic pain models developed over the past 50 years, starting with the numerous neuropathic, inflammatory and central pain models, as well as the growing number of models developed to study various forms of chronic pain from chronic back pain to visceral pain. It also examines the advantages and disadvantages of tonic pain models, mechanism-based and disease-related models of chronic pain, including issues related to the novel discovery of injury- or disease-related pathophysiological processes, the expansion of testing repertoires, and the successes and failures in the translation of analgesic development from animal preclinical models to human chronic pain conditions. The second section addresses experimental design considerations in the implementation of one of the 3Rs for the use of animal models of chronic pain; that is methods employed to reduce the number of animals used. The discussion covers various issues including the advantages and disadvantages of repeated dose designs and within-group drug testing, including incremental dosing schedules, and crossover designs. It also examines concerns surrounding the stability of symptoms and measures, including varying durations of multiple symptoms and the potential development of nociceptive sensitization, as well as possible use-dependent alterations in drug sensitivity and time-dependent changes in pain processes in specific animal models.

Keywords

Chronic pain models Mechanism-based and disease-related models Translation 3Rs Repeated dose trials Crossover designs 

Notes

Acknowledgements

TJC has received grants from the Canadian Institutes of Health, the Quebec Pain Research Network and the Louise and Alan Edwards Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Abbott FA, Ocvirk ROK, Najafee R, Franklin KBJ (1999) Improving the efficiency of the formalin test. Pain 83:561–569PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adam B, Liebregts T, Gschossmann JM, Krippner C, Scholl F, Ruwe M, Holtmann G (2006) Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 123:179–186PubMedCrossRefPubMedCentralGoogle Scholar
  3. Andrews NA, Latrémolière A, Basbaum AI et al (2016) Ensuring transparency and minimization of methodologic bias in preclinical pain research: PPRECISE considerations. Pain 157:901–909PubMedCrossRefPubMedCentralGoogle Scholar
  4. Antunes-Martins A, Perkins JR, Lees J, Hildebrandt T, Orengo C, Bennett DL (2013) Systems biology approaches to finding novel pain mediators. Wiley Interdiscip Rev Syst Biol Med 5:11–35PubMedCrossRefPubMedCentralGoogle Scholar
  5. Balcombe J, Ferdowsian H, Briese L (2017) Prolonged pain research in mice: trends in reference to the 3Rs. J Appl Anim Welfare Sci 16:77–95CrossRefGoogle Scholar
  6. Baron R, Levine JD, Fields HL (1999) Causalgia and reflex sympathetic dystrophy: does the sympathetic nervous system contribute to the generation of pain? Muscle Nerve 22:678–695PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barrett JE (2015) The pain of pain: challenges of animal behavior models. Eur J Pharmacol 753:183–190PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barrot M (2012) Tests and models of nociception and pain in rodents. Neuroscience 211:39–50PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD (2019) The role of voltage-gated sodium channels in pain signaling. Physiol Rev 99:1079–1151PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bercik P, Wang L, Verdu EF et al (2004) Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 127:179–187PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bhangoo SK, Ripsch MS, Buchanan DJ, Miller RJ, White FA (2009) Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy. Mol Pain 5:48PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bjorling DE, Wang ZY, Boldon K, Bushman W (2008) Bacterial cystitis is accompanied by increased peripheral thermal sensitivity in mice. J Urol 179:759–763PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bove SE, Flatters SJ, Inglis JJ, Mantyh PW (2009) New advances in musculoskeletal pain. Brain Res Rev 60:187–201PubMedCrossRefPubMedCentralGoogle Scholar
  15. Brennan TJ, Vandermeulen EP, Gebhart GF (1996) Characterization of a rat model of incisional pain. Pain 64:493–501PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bruce JC, Oatway MA, Weaver LC (2002) Chronic pain after clip-compression injury of the rat spinal cord. Exp Neurol 178:33–48PubMedCrossRefPubMedCentralGoogle Scholar
  17. Butler SH, Godefroy F, Besson JM, Weil-Fugazza J (1992) A limited model for chronic pain studies in the rat. Pain 48:73–81PubMedCrossRefPubMedCentralGoogle Scholar
  18. Buvanendran A, Kroin JS, Kerns JM, Nagalla SN, Tuman KJ (2004) Characterization of a new animal model for evaluation of persistent postthoracotomy pain. Anesth Analg 99:1453–1460PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cahill CM, Dray A, Coderre TJ (1998) Priming enhances endotoxin-induced thermal hyperalgesia and mechanical allodynia in rats. Brain Res 808:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cahill CM, Dray A, Coderre TJ (2003) Enhanced thermal antinociceptive potency and anti-allodynic effects of morphine following spinal administration of endotoxin. Brain Res 960:209–218PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cain DM, Vang D, Simone DA, Hebbel RP, Gupta K (2012) Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness. Br J Haematol 156:535–544PubMedCrossRefPubMedCentralGoogle Scholar
  22. Catheline G, Touquet B, Besson JM, Lombard MC (2006) Parturition in the rat: a physiological pain model. Anesthesiology 104:1257–1265PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ceccarelli I, Scaramuzzino A, Massafra C, Aloisi AM (2003) The behavioral and neuronal effects induced by repetitive nociceptive stimulation are affected by gonadal hormones in male rats. Pain 104:35–47PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chacur M, Milligan ED, Gazda LS et al (2001) A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain 94:231–244PubMedCrossRefPubMedCentralGoogle Scholar
  25. Challa SR (2015) Surgical animal models of neuropathic pain: pros and cons. Int J Neurosci 125:170–174PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chanda ML, Tuttle AH, Baran I et al (2013) Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain 154:1254–1262PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chen SR, Pan HL (2005) Effect of systemic and intrathecal gabapentin on allodynia in a new rat model of postherpetic neuralgia. Brain Res 1042:108–113PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chidiac JJ, Rifai K, Hawwa NN, Massaad CA, Jurjus AR, Jabbur SJ, Saadé NE (2002) Nociceptive behaviour induced by dental application of irritants to rat incisors: a new model for tooth inflammatory pain. Eur J Pain 6:55–67PubMedCrossRefPubMedCentralGoogle Scholar
  29. Christensen MD, Everhart AW, Pickelman JT, Hulsebosch CE (1996) Mechanical and thermal allodynia in chronic central pain following spinal cord injury. Pain 68:97–107PubMedCrossRefPubMedCentralGoogle Scholar
  30. Christianson CA, Corr M, Firestein GS, Mobargha A, Yaksh TL, Svensson CI (2010) Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain 151:394–403PubMedPubMedCentralCrossRefGoogle Scholar
  31. Coderre TJ (2011) Complex regional pain syndrome—type I: what’s in a name? J Pain 12:2–12PubMedCrossRefPubMedCentralGoogle Scholar
  32. Coderre TJ, Bennett GJ (2010) A hypothesis for the cause of complex regional pain syndrome-type I (reflex sympathetic dystrophy): pain due to deep-tissue microvascular pathology. Pain Med 11:1224–1238PubMedPubMedCentralCrossRefGoogle Scholar
  33. Coderre TJ, Wall PD (1987) Ankle joint urate arthritis (AJUA) in rats: an alternative animal model of arthritis to that produced by Freund's adjuvant. Pain 28:379–393PubMedCrossRefPubMedCentralGoogle Scholar
  34. Coderre TJ, Vaccarino AL, Melzack R (1990) Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res 535:155–158PubMedCrossRefPubMedCentralGoogle Scholar
  35. Coderre TJ, Fundytus ME, McKenna JE, Dalal S, Melzack R (1993a) The formalin test: a validation of the weighted-scores method of behavioural pain rating. Pain 54:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  36. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993b) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259–285PubMedCrossRefPubMedCentralGoogle Scholar
  37. Coderre TJ, Xanthos DN, Francis L, Bennett GJ (2004) Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain 112:94–105PubMedCrossRefPubMedCentralGoogle Scholar
  38. Colleoni M, Sacerdote P (2010) Murine models of human neuropathic pain. Biochim Biophys Acta 1802(10):924–933.  https://doi.org/10.1016/j.bbadis.2009.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Courteix C, Eschalier A, Lavarenne J (1993) Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53:81–88PubMedCrossRefPubMedCentralGoogle Scholar
  40. Coutinho SV, Plotsky PM, Sablad M et al (2002) Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol 282:G307–G316PubMedCrossRefPubMedCentralGoogle Scholar
  41. Currie GL, Delaney A, Bennett MI et al (2013) Animal models of bone cancer pain: systematic review and meta-analyses. Pain 154:917–926PubMedCrossRefPubMedCentralGoogle Scholar
  42. D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79Google Scholar
  43. Davidson E, Coppey L, Lu B, Arballo V, Calcutt NA, Gerard C, Yorek M (2009) The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. Exp Diabetes Res 2009:431980PubMedGoogle Scholar
  44. De Rantere D, Schuster CJ, Reimer JN, Pang DSJ (2016) The relationship between the rat grimace scale and mechanical hypersensitivity testing in three experimental pain models. Eur J Pain 20:417–426PubMedCrossRefPubMedCentralGoogle Scholar
  45. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158PubMedCrossRefPubMedCentralGoogle Scholar
  46. DeLeo JA, Coombs DW, Willenbring S, Colburn RW, Fromm C, Wagner R, Twitchell BB (1994) Characterization of a neuropathic pain model: sciatic cryoneurolysis in the rat. Pain 56:9–16PubMedCrossRefGoogle Scholar
  47. Depoortere R, Meleine M, Bardin L, Aliaga M, Muller E, Ardid D, Newman-Tancredi A (2011) Milnacipran is active in models of irritable bowel syndrome and abdominal visceral pain in rodents. Eur J Pharmacol 672:83–87PubMedCrossRefGoogle Scholar
  48. DeSantana JM, Sluka KA (2008) Central mechanisms in the maintenance of chronic widespread noninflammatory muscle pain. Curr Pain Headache Rep 12:338–343PubMedPubMedCentralCrossRefGoogle Scholar
  49. DeSantana JM, da Cruz KM, Sluka KA (2013) Animal models of fibromyalgia. Arthritis Res Ther 15:222PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dina OA, Barletta J, Chen X, Mutero A, Martin A, Messing RO, Levine JD (2000) Key role for the epsilon isoform of protein kinase C in painful alcoholic neuropathy in the rat. J Neurosci 20:8614–8619PubMedPubMedCentralCrossRefGoogle Scholar
  51. Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, Obrosova IG (2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55:3335–3343PubMedCrossRefPubMedCentralGoogle Scholar
  52. Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4:161–174PubMedCrossRefPubMedCentralGoogle Scholar
  53. Farmer MA, Taylor AM, Bailey AL et al (2011) Repeated vulvovaginal fungal infections cause persistent pain in a mouse model of vulvodynia. Sci Transl Med 3:101ra91PubMedPubMedCentralCrossRefGoogle Scholar
  54. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Meth 39:175–191CrossRefGoogle Scholar
  55. Fernihough J, Gentry C, Malcangio M et al (2004) Pain related behaviour in two models of osteoarthritic in the rat knee. Pain 112:83–93PubMedCrossRefPubMedCentralGoogle Scholar
  56. Flatters SJL (2008) Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Pain 13:119–130CrossRefGoogle Scholar
  57. Fleetwood-Walker SM, Quinn JP, Wallace C et al (1999) Behavioural changes in the rat following infection with varicella-zoster virus. J Gen Virol 80:2433–2436PubMedCrossRefPubMedCentralGoogle Scholar
  58. Fox A, Eastwood C, Gentry C, Manning D, Urban L (1999) Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain 81:307–316PubMedCrossRefPubMedCentralGoogle Scholar
  59. Fujii Y, Ozaki N, Taguchi T, Mizumura K, Furukawa K, Sugiura Y (2008) TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain 140:292–304PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gallagher JJ, Tajerian M, Guo T et al (2013) Acute and chronic phases of complex regional pain syndrome in mice are accompanied by distinct transcriptional changes in the spinal cord. Mol Pain 9:40–51PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gazelius B, Cui JG, Svensson M, Meyerson B, Linderoth B (1996) Photochemically induced ischaemic lesion of the rat sciatic nerve. A novel method providing high incidence of mononeuropathy. NeuroReport 7:2619–2623PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gegelashvili G, Bjerrum OJ (2019) Glutamate transport system as a key constituent of glutamosome: molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology.  https://doi.org/10.1016/j.neuropharm.2019.04.029 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Gelgor L, Phillips S, Mitchell D (1986) Hyperalgesia following ischaemia of the rat's tail. Pain 24:251–257PubMedCrossRefPubMedCentralGoogle Scholar
  64. Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, Agrawal YO (2016) Challenges and issues with streptozotocin-induced diabetes—a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63PubMedCrossRefPubMedCentralGoogle Scholar
  65. Griffin TM, Fermor B, Huebner JL et al (2010) Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res Ther 12:R130PubMedPubMedCentralCrossRefGoogle Scholar
  66. Guo TZ, Offley SC, Boyd EA, Jacobs CR, Kingery WS (2004) Substance P signaling contributes to the vascular and nociceptive abnormalities observed in a tibial fracture rat model of complex regional pain syndrome type I. Pain 108:95–107PubMedCrossRefPubMedCentralGoogle Scholar
  67. Guo Y, Logan H, Glueck D, Muller KE (2013) Selecting a sample size for studies with repeated measures. BMC Med Res Meth 13:100–108CrossRefGoogle Scholar
  68. Guo TZ, Wei T, Li WW, Li XQ, Clark JD, Kingery WS (2014) Immobilization contributes to exaggerated neuropeptide signaling, inflammatory changes, and nociceptive sensitization after fracture in rats. J Pain 15:1033–1045PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hasnie FS, Wallace VCJ, Hefner K, Holmes A, Rice ASC (2007) Mechanical and cold hypersensitivity in nerve-injured C57BL/56J mice is not associated with fear-avoidance- and depression-related behaviour. Br J Anaesth 98:816–822PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hayes AG, Sheehan MJ, Tyers MB (1987) Differential sensitivity of models of antinociception in the rat, mouse and guinea-pig to mu- and kappa-opioid receptor agonists. Br J Pharmacol 91:823–832PubMedPubMedCentralCrossRefGoogle Scholar
  71. Herbert MK, Holzer P (2002) Why are substance P (NK1)-receptor antagonists ineffective in pain treatment? Anaesthesist 51:308–319PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hill R (2000) NK1 (substance P) receptor antagonists—why are they not analgesic in humans? Trends Pharmacol Sci 21:244–246PubMedCrossRefPubMedCentralGoogle Scholar
  73. Honore P, Mantyh PW (2000) Bone cancer pain: from mechanism to model to therapy. Pain Med 1:303–309PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hu JW, Sessle BJ, Raboisson P, Dallel R, Woda A (1992) Stimulation of craniofacial muscle afferents induces prolonged facilitatory effects in trigeminal nociceptive brain-stem neurones. Pain 48:53–60PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hulsebosch CE, Xu GY, Perez-Polo JR, Westlund KN, Taylor CP, McAdoo DJ (2000) Rodent model of chronic central pain after spinal cord contusion injury and effects of gabapentin. J Neurotrauma 17:1205–1217PubMedCrossRefPubMedCentralGoogle Scholar
  76. Imamura Y, Kawamoto H, Nakanishi O (1997) Characterization of heat-hyperalgesia in an experimental trigeminal neuropathy in rats. Exp Brain Res 116:97–103PubMedCrossRefPubMedCentralGoogle Scholar
  77. Iwata K, Tashiro A, Tsuboi Y et al (1999) Medullary dorsal horn neuronal activity in rats with persistent temporomandibular joint and perioral inflammation. J Neurophysiol 82:1244–1253PubMedCrossRefPubMedCentralGoogle Scholar
  78. Jaggi AS, Jain V, Singh N (2011) Animal models of neuropathic pain. Fundam Clin Pharmacol 25:1–28PubMedCrossRefPubMedCentralGoogle Scholar
  79. Jasmin L, Kohan L, Franssen M, Janni G, Goff JR (1998) The cold plate as a test of nociceptive behaviors: description and application to the study of chronic neuropathic and inflammatory pain models. Pain 75:367–382PubMedCrossRefPubMedCentralGoogle Scholar
  80. Jimenez-Andrade JM, Martin CD, Koewler NJ et al (2007) Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture. Pain 133:183–196PubMedCrossRefPubMedCentralGoogle Scholar
  81. Joseph EK, Chen X, Khasar SG, Levine JD (2004) Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain 107:147–158PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kim SH, Chung JM (1992) An experimental-model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kitayama T (2018) The role of K+-Cl–cotransporter-2 in neuropathic pain. Neurochem Res 43:110–115PubMedCrossRefPubMedCentralGoogle Scholar
  84. Klafke JZ, da Silva MA, Rossato MF et al (2016) Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms. Pflugers Arch Eur J Physiol 468:229–241CrossRefGoogle Scholar
  85. Kontinen VK, Kauppila T, Paananen S, Pertovaara A, Kalso E (1999) Behavioural measures of depression and anxiety in rats with spinal nerve ligation-induced neuropathy. Pain 80:341–346PubMedCrossRefPubMedCentralGoogle Scholar
  86. Koo ST, Park YI, Lim KS, Chung K, Chung JM (2002) Acupuncture analgesia in a new rat model of ankle sprain pain. Pain 99:423–431PubMedCrossRefPubMedCentralGoogle Scholar
  87. LaBuda CJ, Cutler TD, Dougherty PM, Fuchs PN (2000) Mechanical and thermal hypersensitivity develops following kainate lesion of the ventral posterior lateral thalamus in rats. Neurosci Lett 290:79–83PubMedCrossRefPubMedCentralGoogle Scholar
  88. Laferrière A, Millecamps M, Xanthos DN et al (2008) Cutaneous tactile allodynia associated with microvascular dysfunction in muscle. Mol Pain 4:49PubMedPubMedCentralCrossRefGoogle Scholar
  89. Laferriere A, Abaji R, Tsai CY, Ragavendran JV, Coderre TJ (2014) Topical combinations to treat microvascular dysfunction of chronic post ischemia pain. Anesth Analg 118:830–840PubMedPubMedCentralCrossRefGoogle Scholar
  90. Larsson MH, Rapp L, Lindström E (2006) Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol Motil 18:144–152PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lee SJ, Seo AJ, Park BS, Jo HW, Huh Y (2014) Neuropathic pain model of peripheral neuropathies mediated by mutations of glycyl-tRNA synthetase. J Korean Med Sci 29:1138–1144PubMedPubMedCentralCrossRefGoogle Scholar
  92. Levitt M, Heybach JP (1981) The deafferentation syndrome in genetically blind rats: a model of the painful phantom limb. Pain 10:67–73PubMedCrossRefPubMedCentralGoogle Scholar
  93. Lindsay TH, Jonas BM, Sevcik MA et al (2005) Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight, and disease progression. Pain 119:233–246PubMedCrossRefPubMedCentralGoogle Scholar
  94. Ling B, Authier N, Balayssac D, Eschalier A, Coudore F (2005) Assessment of nociception in acrylamide-induced neuropathy in rats. Pain 119:104–112PubMedCrossRefPubMedCentralGoogle Scholar
  95. Liu MG, Chen J (2014) Preclinical research on pain comorbidity with affective disorders and cognitive deficits: challenges and perspectives. Prog Neurobiol 116:13–32PubMedCrossRefPubMedCentralGoogle Scholar
  96. Lombard MC, Nashold BS Jr, Albe-Fessard D, Salman N, Sakr C (1979) Deafferentation hypersensitivity in the rat after dorsal rhizotomy: a possible animal model of chronic pain. Pain 6:163–174PubMedCrossRefPubMedCentralGoogle Scholar
  97. Malfait AM, Schnitzer TJ (2013) Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol 9:654–664PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mao J (2009) Translational pain research: achievements and challenges. J Pain 10:1001–1011PubMedPubMedCentralCrossRefGoogle Scholar
  99. Martin TJ, Buechler NL, Kahn W, Crews JC, Eisenach JC (2004) Effects of laparotomy on spontaneous exploratory activity and conditioned operant responding in the rat: a model for postoperative pain. Anesthesiology 101:191–203PubMedCrossRefPubMedCentralGoogle Scholar
  100. Melo-Carrillo A, Lopez-Avila A (2013) A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia 33:1096–1105PubMedCrossRefPubMedCentralGoogle Scholar
  101. Millecamps M, Tajerian M, Naso L, Sage EH, Stone LS (2012) Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain 153:1167–1179PubMedCrossRefPubMedCentralGoogle Scholar
  102. Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10:283–294PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mogil JS, Davis KD, Derbyshire SW (2010) The necessity of animal models in pain research. Pain 151:12–17PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mosconi T, Kruger L (1996) Fixed-diameter polyethylene cuffs applied to the rat sciatic nerve induce a painful neuropathy: ultrastructural morphometric analysis of axonal alterations. Pain 64:37–57PubMedCrossRefPubMedCentralGoogle Scholar
  105. Na HS, Han JS, Ko KH, Hong SK (1994) A behavioral model for peripheral neuropathy produced in rat’s tail by inferior caudal trunk injury. Neurosci Lett 177:50–52PubMedCrossRefPubMedCentralGoogle Scholar
  106. Nagamine K, Ozaki N, Shinoda M et al (2006) Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats. J Pain 7:659–670PubMedCrossRefPubMedCentralGoogle Scholar
  107. Ness TJ, Gebhart GF (1988) Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudoaffective reflexes in the rat. Brain Res 450:153–169PubMedCrossRefPubMedCentralGoogle Scholar
  108. Nozaki-Taguchi N, Yaksh TL (1998) A novel model of primary and secondary hyperalgesia after mild thermal injury in the rat. Neurosci Lett 254:25–28PubMedCrossRefPubMedCentralGoogle Scholar
  109. Nyland JE, McLean SA, Averitt DL (2015) Prior stress exposure increases pain behaviors in a rat model of full thickness thermal injury. Burns 41:1796–1804PubMedCrossRefPubMedCentralGoogle Scholar
  110. Ogbonna AC, Clark AK, Gentry C, Hobbs C, Malcangio M (2013) Pain-like behaviour and spinal changes in the monosodium iodoacetate model of osteoarthritis in C57Bl/6 mice. Eur J Pain 17:514–526PubMedCrossRefPubMedCentralGoogle Scholar
  111. Okuda K, Nakahama H, Miyakawa H, Shima K (1984) Arthritis induced in cat by sodium urate: a possible animal model for tonic pain. Pain 18:287–297PubMedCrossRefPubMedCentralGoogle Scholar
  112. Olechowski CJ, Truong JJ, Kerr BJ (2009) Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 141:156–164PubMedCrossRefPubMedCentralGoogle Scholar
  113. Olmarker K, Iwabuchi M, Larsson K, Rydevik B (1998) Walking analysis of rats subjected to experimental disc herniation. Eur Spine J 7:394–399PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pearson CM (1956) Development of arthritis, periarthritis, and periostitis in rats given adjuvant. Proc Soc Exp Biol Med 91:95PubMedCrossRefPubMedCentralGoogle Scholar
  115. Percie du Sert N, Rice AS (2014) Improving the translation of analgesic drugs to the clinic: animal models of neuropathic pain. Br J Pharmacol 171:2951–2963PubMedPubMedCentralCrossRefGoogle Scholar
  116. Perrot S, Guilbaud G, Kayser V (1999) Effects of intraplantar morphine on paw edema and pain-related behaviour in a rat model of repeated acute inflammation. Pain 83:249–257PubMedCrossRefPubMedCentralGoogle Scholar
  117. Peter-Szabo M, Kekesi G, Nagy E, Sziver E, Benedek G, Horvath G (2007) Quantitative characterization of a repeated acute joint inflammation model in rats. Clin Exp Pharm Physiol 34:520–526CrossRefGoogle Scholar
  118. Pogatzki EM, Niemeier JS, Brennan TJ (2002) Persistent secondary hyperalgesia after gastrocnemius incision in the rat. Eur J Pain 6:295–305PubMedCrossRefPubMedCentralGoogle Scholar
  119. Polomano RC, Mannes AJ, Clark US, Bennett GJ (2001) A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94:293–304PubMedCrossRefPubMedCentralGoogle Scholar
  120. Ragavendran JV, Laferrière A, Khorashadi M, Coderre TJ (2014) Pentoxifylline reduces chronic post-ischemia pain by alleviating microvascular dysfunction. Eur J Pain 18:406–414PubMedCrossRefPubMedCentralGoogle Scholar
  121. Rainsford KD (1982) Adjuvant polyarthritis in rats: is this a satisfactory model for screening anti-arthritic drugs. Agents Actions 12(1982):452–458PubMedCrossRefPubMedCentralGoogle Scholar
  122. Reeve AJ, Patel S, Fox A, Walker K, Urban L (2000) Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 4:247–257PubMedCrossRefPubMedCentralGoogle Scholar
  123. Ren K, Hylden JL, Williams GM, Ruda MA, Dubner R (1992) The effects of a non-competitive NMDA receptor antagonist, MK-801, on behavioral hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain 50:331–344PubMedCrossRefPubMedCentralGoogle Scholar
  124. Rice ASC, Cimino-Brown D, Eisenach JC et al (2008) Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards. Pain 139:243–247PubMedCrossRefPubMedCentralGoogle Scholar
  125. Rice ASC, Finnerup NB, Kemp HI, Currie GL, Baron R (2018) Sensory profiling in animal models of neuropathic pain: a call for back-translation. Pain 159:819–824PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rodrigues-Filho R, Santos AR, Bertelli JA, Calixto JB (2003) Avulsion injury of the rat brachial plexus triggers hyperalgesia and allodynia in the hindpaws: a new model for the study of neuropathic pain. Brain Res 982:186–194PubMedCrossRefPubMedCentralGoogle Scholar
  127. Rosland JH, Tjolsen A, Maehle B, Hole K (1990) The formalin test in mice: effect of formalin concentration. Pain 42:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  128. Roveroni RC, Parada CA, Veiga MCFA, Tambeli CH (2001) Development of a behavioral model of TMJ pain in rats: the TMJ formalin test. Pain 94:185–191PubMedCrossRefPubMedCentralGoogle Scholar
  129. Roza C, Laird JM, Cervero F (1998) Spinal mechanisms underlying persistent pain and referred hyperalgesia in rats with an experimental ureteric stone. J Neurophysiol 79:1603–1612PubMedCrossRefPubMedCentralGoogle Scholar
  130. Scanzi J, Accarie A, Muller E et al (2016) Colonic overexpression of the T-type calcium channel Ca(v) 3.2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients. Neurogastroenterol Motil 28:1632–1640PubMedCrossRefPubMedCentralGoogle Scholar
  131. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218PubMedCrossRefPubMedCentralGoogle Scholar
  132. Seo HS, Kim HW, Roh DH et al (2008) A new rat model for thrombus-induced ischemic pain (TIIP); development of bilateral mechanical allodynia. Pain 139:520–532PubMedCrossRefPubMedCentralGoogle Scholar
  133. Seo BK, Park DS, Baek YH (2013) The analgesic effect of electroacupuncture on inflammatory pain in the rat model of collagenase-induced arthritis: mediation by opioidergic receptors. Rheumatol Int 33:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  134. Shamji MF, Allen KD, So S et al (2009) Gait abnormalities and inflammatory cytokines in an autologous nucleus pulposus model of radiculopathy. Spine 34:648–654PubMedPubMedCentralCrossRefGoogle Scholar
  135. Shi X, Guo TZ, Wei T, Li WW, Clark DJ, Kingery WS (2015) Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization. Pain 156:1852–1863PubMedPubMedCentralCrossRefGoogle Scholar
  136. Shimoyama M, Tanaka K, Hasue F, Shimoyama N (2002) A mouse model of neuropathic cancer pain. Pain 99:167–174PubMedCrossRefPubMedCentralGoogle Scholar
  137. Siegel SM, Lee JW, Oaklander AL (2007) Needlestick distal nerve injury in rats models symptoms of complex regional pain syndrome. Anesth Analg 105:1820–1829PubMedCrossRefPubMedCentralGoogle Scholar
  138. Siegmund E, Cadmus R, Lu G (1957) A method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med 95:729–731PubMedCrossRefPubMedCentralGoogle Scholar
  139. Sluka KA, Karla A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral long-lasting hyperalgesia. Muscle Nerve 24:37–46PubMedCrossRefPubMedCentralGoogle Scholar
  140. Song XJ, Gan Q, Cao JL, Wang ZB, Rupert RL (2006) Spinal manipulation reduces pain and hyperalgesia after lumbar intervertebral foramen inflammation in the rat. J Manipul Physiol Ther 29:5–13CrossRefGoogle Scholar
  141. Stein C, Millan MJ, Herz A (1988) Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav 31:445–451PubMedCrossRefPubMedCentralGoogle Scholar
  142. Strong JA, Xie W, Bataille FJ, Zhang JM (2013) Preclinical studies of low back pain. Mol Pain 9:17PubMedPubMedCentralCrossRefGoogle Scholar
  143. Susskind EC, Howland EW (1980) Measuring effect magnitude in repeated measures ANOVA designs: Implications for gerontological research. J Gerontol 35:867–876PubMedCrossRefPubMedCentralGoogle Scholar
  144. Tajerian M, Leu D, Yang P, Huang TT, Kingery WS, Clark JD (2015) Differential efficacy of ketamine in the acute versus chronic stages of complex regional pain syndrome in mice. Anesthesiology 12:1435–1447CrossRefGoogle Scholar
  145. Tjolsen A, Berge O-G, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17PubMedPubMedCentralCrossRefGoogle Scholar
  146. Vera-Portocarrero LP, Lu Y, Westlund KN (2003) Nociception in persistent pancreatitis in rats: effects of morphine and neuropeptide alterations. Anesthesiology 98:474–484PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vos BP, Strassman AM, Maciewicz RJ (1994) Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J Neurosci 14:2708–2723PubMedPubMedCentralCrossRefGoogle Scholar
  148. Walker K, Dray A, Perkins M (1996) Hyperalgesia in rats following intracerebroventricular administration of endotoxin: effect of bradykinin B1 and B2 receptor antagonist treatment. Pain 65:211–219PubMedCrossRefPubMedCentralGoogle Scholar
  149. Wall PD, Scadding JW, Tomkiewicz MM (1979) The production and prevention of experimental anesthesia dolorosa. Pain 6:175–182PubMedCrossRefPubMedCentralGoogle Scholar
  150. Wasserman JK, Koeberle PD (2009) Development and characterization of a hemorrhagic rat model of central post-stroke pain. Neuroscience 161:173–183PubMedCrossRefPubMedCentralGoogle Scholar
  151. Winkelstein BA (2011) How can animal models inform on the transition to chronic symptoms in whiplash? Spine 36(25 Suppl):S218–S225PubMedPubMedCentralCrossRefGoogle Scholar
  152. Woodcock J, Witter J, Dionne RA (2007) Stimulating the development of mechanism-based, individualized pain therapies. Nat Rev Drug Discov 6:703–710PubMedCrossRefPubMedCentralGoogle Scholar
  153. Woolfe G, MacDonald AD (1944) The evaluation of the analgesic action of pethidine hydrochloride (Demerol). J Pharm Exp Ther 80:300–307Google Scholar
  154. Xu XJ, Hao JX, Aldskogius H, Seiger A, Wiesenfeld-Hallin Z (1992) Chronic pain-related syndrome in rats after ischemic spinal cord lesion: a possible animal model for pain in patients with spinal cord injury. Pain 48:279–290PubMedCrossRefPubMedCentralGoogle Scholar
  155. Yezierski RP, Hansson P (2018) Inflammatory and neuropathic pain from bench to bedside: what went wrong? J Pain 19:571–588PubMedCrossRefPubMedCentralGoogle Scholar
  156. Yezierski RP, Liu S, Ruenes GL, Kajander KJ, Brewer KL (1998) Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain 75:141–155PubMedCrossRefPubMedCentralGoogle Scholar
  157. Zahn PK, Brennan TJ (1999) Primary and secondary hyperalgesia in a rat model for human postoperative pain. Anesthesiology 90:863–872PubMedCrossRefPubMedCentralGoogle Scholar
  158. Zhang J-M, Song XJ, LaMotte RH (1999) Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol 82:3359–3366PubMedCrossRefPubMedCentralGoogle Scholar
  159. Zhang HW, Iida Y, Andoh T, Nojima H, Murata J, Saiki I, Kuraishi Y (2003) Mechanical hypersensitivity and alterations in cutaneous nerve fibers in a mouse model of skin cancer pain. J Pharmacol Sci 91:167–170PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnesthesiaMcGill UniversityMontrealCanada
  2. 2.Alan Edwards Centre for Research on PainMcGill UniversityMontrealCanada
  3. 3.Department of PsychologyMcGill UniversityMontrealCanada
  4. 4.Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
  5. 5.McGill University Hospital Centre Research InstituteMontrealCanada

Personalised recommendations