FGF2 and dual agonist of NCAM and FGF receptor 1, Enreptin, rescue neurite outgrowth loss in hippocampal neurons expressing mutated huntingtin proteins

  • Mirolyuba IlievaEmail author
  • Troels T. Nielsen
  • Tanja Michel
  • Stanislava Pankratova
Psychiatry and Preclinical Psychiatric Studies - Original Article


In the present study, we developed an in vitro model of Huntington disease (HD) by transfecting primary rat hippocampal neurons with plasmids coding for m-htt exon 1 with different number of CAG repeats (18, 50 and 115) and demonstrated the influence of the length of polyQ sequence on neurite elongation. We found that exogenously applied FGF2 significantly rescued the m-htt-induced loss of neurite outgrowth. Moreover, the Enreptin peptide, an FGFR1 and NCAM dual agonist, had a similar neuritogenic effect to FGF2 in clinically relevant m-htt 50Q-expressing neurons. This study has developed an in vitro model of primary hippocampal neurons transfected with m-htt-coding vectors that is a powerful tool to study m-htt–related effects on neuronal placticity.


Huntington disease Mutant huntingtin FGF2 Enreptin Neurite outgrowth Hippocampal neurons 



The authors thank Claire Gudex, Department of Clinical Research, University of Southern Denmark, for proofreading the manuscript.


The project was supported by the Velux Foundation.

Compliance with ethical standards

Conflict of interest

The authors state that there is no conflict of interest relevant to this article, nor has it previously been published.


Animals were treated in accordance with the Danish Animal Welfare Act, and the study was approved by the Department of Experimental Medicine at the University of Copenhagen.


  1. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4:398–403CrossRefGoogle Scholar
  2. Bartus RT, Baumann TL, Brown L, Kruegel BR, Ostrove JM, Herzog CD (2013) Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating “clinical proof-of-concept” for AAV-neurturin (CERE-120) in Parkinson’s disease. Neurobiol Aging 34(1):35–61CrossRefGoogle Scholar
  3. Begeti F, Schwab LC, Mason SL, Barker RA (2016) Hippocampal dysfunction defines disease onset in Huntington’s disease. J Neurol Neurosurg Psychiatry 87(9):975–981CrossRefGoogle Scholar
  4. Boesgaard TW, Nielsen TT, Josefsen K, Hansen T, Jørgensen T, Pedersen O, Nørremølle A, Nielsen JE, Hasholt L (2009) Huntington’s disease does not appear to increase the risk of diabetes mellitus. J Neuroendocrinol 21(9):770–776CrossRefGoogle Scholar
  5. Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF (2008) Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Res Rev 58(1):209–225CrossRefGoogle Scholar
  6. Brito V, Giralt A, Enriquez-Barreto L, Puigdellívol M, Suelves N, Zamora-Moratalla A et al (2014) Neurotrophin receptor p75(NTR) mediates Huntington’s disease-associated synaptic and memory dysfunction. J Clin Invest 124(10):4411–4428CrossRefGoogle Scholar
  7. Carter RL, Chen Y, Kunkanjanawan T, Xu Y, Moran SP, Putkhao K et al (2014) Reversal of cellular phenotypes in neural cells derived from Huntington’s disease monkey-induced pluripotent stem cells. Stem Cell Rep 3(4):585–593CrossRefGoogle Scholar
  8. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24(3):182–188CrossRefGoogle Scholar
  9. Chaganti SS, McCusker EA, Loy CT (2017) What do we know about late onset Huntington’s disease? J Huntingtons Dis 6(2):95–103CrossRefGoogle Scholar
  10. Dargaei Z, Bang JY, Mahadevan V, Khademullah CS, Bedard S et al (2018) Restoring GABAergic inhibition rescues memory deficits in a Huntington’s disease mouse model. PNAS 115(7):E1618–E1626CrossRefGoogle Scholar
  11. Davenport EL, Morgan GJ, Davies FE (2008) Untangling the unfolded protein response. Cell Cycle 7:865–869CrossRefGoogle Scholar
  12. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993CrossRefGoogle Scholar
  13. Enevoldsen MN, Kochoyan A, Jurgenson M, Jaako K, Dmytriyeva O, Walmod PS et al (2012) Neuroprotective and memory enhancing properties of a dual agonist of the FGF receptor and NCAM. Neurobiol Dis 48(3):533–545CrossRefGoogle Scholar
  14. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222CrossRefGoogle Scholar
  15. Gascon E, Vutskits L, Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56(1):101–118CrossRefGoogle Scholar
  16. Gil JM, Mohapel P, Araújo IM, Popovic N, Li JY, Brundin P, Petersén A (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis 20(3):744–751CrossRefGoogle Scholar
  17. Giralt A, Brito V, Chevy Q, Simonnet C, Otsu Y, Cifuentes-Díaz C et al (2017) Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington’s disease model. Nat Commun 30(8):15592CrossRefGoogle Scholar
  18. Godin JD, Colombo K, Molina-Calavita M, Keryer G, Zala D, Charrin BC et al (2010) Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 67(3):392–406CrossRefGoogle Scholar
  19. Harjes P, Wanker EE (2003) The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 28:425–433CrossRefGoogle Scholar
  20. Ho LW, Brown R, Maxwell M, Wyttenbach A, Rubinsztein DC (2001) Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington’s disease. J Med Genet 38(7):450–452CrossRefGoogle Scholar
  21. Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J, Crippen D et al (2005) FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington’s disease. PNAS 102(50):18189–18194CrossRefGoogle Scholar
  22. Kolodziejczyk K, Parsons MP, Southwell AL, Hayden MR, Raymond LA (2014) Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease. PLoS One 9(4):e94562CrossRefGoogle Scholar
  23. Leavitt BR, van Raamsdonk JM, Shehadeh J, Fernandes H, Murphy Z, Graham RK et al (2006) Wild-type huntingtin protects neurons from excitotoxicity. J Neurochem 96(4):1121–1129CrossRefGoogle Scholar
  24. Leitman J, Ulrich Hartl F, Lederkremer GZ (2013) Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat Commun 4:2753CrossRefGoogle Scholar
  25. Levy YS, Gilgun-Sherki Y, Melamed E, Offen D (2005) Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 19(2):97–127CrossRefGoogle Scholar
  26. Li H, Li SH, Yu ZX, Shelbourne P, Li XJ (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosc 21(21):8473–8481CrossRefGoogle Scholar
  27. Liu Y, Xue Y, Ridley S, Zhang D, Rezvani K, Fu XD, Wang H (2014) Direct reprogramming of Huntington’s disease patient fibroblasts into neuron-like cells leads to abnormal neurite outgrowth, increased cell death, and aggregate formation. PLoS One 9(10):e109621CrossRefGoogle Scholar
  28. Maar TE, Rønn LC, Bock E, Berezin V, Moran J, Pasantes-Morales H, Schousboe A (1997) Characterization of microwell cultures of dissociated brain tissue for studies of cell-cell interactions. J Neurosci Res 47:163–172CrossRefGoogle Scholar
  29. Maat-Schieman ML, Dorsman JC, Smoor MA, Siesling S, Van Duinen SG, Verschuuren JJ et al (1999) Distribution of inclusions in neuronal nuclei and dystrophic neurites in Huntington disease brain. J Neuropathol Exp Neurol 58:129–137CrossRefGoogle Scholar
  30. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  31. Maksimović ID, Jovanović MD, Colić M, Mihajlović R, Mićić D, Selaković V et al (2001) Oxidative damage and metabolic dysfunction in experimental Huntington’s disease: selective vulnerability of the striatum and hippocampus. Vojnosanit Pregl 58(3):237–242Google Scholar
  32. Mason I (2007) Initiation to end point: the multiple roles offibroblast growth factors in neural development. Nat Rev Neurosci 8:583–596CrossRefGoogle Scholar
  33. Murphy KP, Carter RJ, Lione LA, Mangiarini L, Mahal A, Bates GP et al (2000) Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J Neurosci 20(13):5115–5123CrossRefGoogle Scholar
  34. Myers RH (2004) Huntington’s disease genetics. NeuroRx 1(2):255–262CrossRefGoogle Scholar
  35. Neiiendam JL, Køhler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK et al (2004) An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 91(4):920–935CrossRefGoogle Scholar
  36. Ornitz DM, Itoh N (2015) The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266CrossRefGoogle Scholar
  37. Pankratova S, Kiryushko D, Sonn K, Soroka V, Køhler LB, Rathje M et al (2010) Neuroprotective properties of a novel, non-haematopoietic agonist of the erythropoietin receptor. Brain 133:2281–2294CrossRefGoogle Scholar
  38. Paulsen JS (2011) Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep 11(5):474–483CrossRefGoogle Scholar
  39. Petrasch-Parwez E, Nguyen HP, Löbbecke-Schumacher M, Habbes HW, Wieczorek S, Riess O et al (2007) Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington disease. J Comp Neurol 501(5):716–730CrossRefGoogle Scholar
  40. Quarrell OWJ, Nance MA (2009) The diagnostic challenge. In: Quarrell OWJ, Brewer HM, Squitieri F, Barker RA, Nance MA, Landwehrmeyer BG (eds) Juvenile Huntington’s Disease and Other Trinucleotide Repeat Disorders. Oxford University Press, New YorkGoogle Scholar
  41. Quarrell O, O’Donovan KL, Bandmann O, Strong M (2012) The prevalence of juvenile Huntington’s disease: a review of the literature and meta-analysis. PLoS Curr 4:e4f8606b742ef3CrossRefGoogle Scholar
  42. Rigamonti D, Sipione S, Goffredo D, Zuccato C, Fossale E, Cattaneo E (2001) Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 276:14545–14548CrossRefGoogle Scholar
  43. Rønn LC, Ralets I, Hartz BP, Bech M, Berezin A, Berezin V et al (2000) A simple procedure for quantification of neurite outgrowth based on stereological principles. J Neurosci Methods 100(1–2):25–32CrossRefGoogle Scholar
  44. Roos RAC (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40CrossRefGoogle Scholar
  45. Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35(5):819–822CrossRefGoogle Scholar
  46. Saudou F, Humbert S (2016) The biology of huntingtin. Neuron 89(5):910–926CrossRefGoogle Scholar
  47. Shirasaki DI, Greiner ER, Al-Ramahi I, Gray M, Boontheung P, Geschwind DH et al (2012) Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron 75(1):41–57CrossRefGoogle Scholar
  48. Sonn K, Pankratova S, Korshunova I, Zharkovsky A, Bock E, Berezin V, Kiryushko D (2010) A metallothionein mimetic peptide protects neurons against kainic acid-induced excitotoxicity. J Neurosci Res 88(5):1074–1082Google Scholar
  49. Spargo E, Everall IP, Lantos PL (1993) Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry 56(5):487–491CrossRefGoogle Scholar
  50. Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10(1):31–42CrossRefGoogle Scholar
  51. Usdin MT, Shelbourne PF, Myers RM, Madison DV (1999) Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Hum Mol Genet 8(5):839–846CrossRefGoogle Scholar
  52. van der Borght K, Brundin P (2007) Reduced expression of PSA-NCAM in the hippocampus and piriform cortex of the R6/1 and R6/2 mouse models of Huntington’s disease. Exp Neurol 204(1):473–478CrossRefGoogle Scholar
  53. Vassos E, Panas M, Kladi A, Vassilopoulos D (2008) Effect of CAG repeat length on psychiatric disorders in Huntington’s disease. J Psychiatr Res 42(7):544–549CrossRefGoogle Scholar
  54. Walker FO (2007) Huntington’s disease. Lancet 369:218–228CrossRefGoogle Scholar
  55. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL et al (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet 17:404–410CrossRefGoogle Scholar
  56. Zhang N, Bailus BJ, Ring KL, Ellerby LM (2016) iPSC-based drug screening for Huntington’s disease. Brain Res 1638:42–56CrossRefGoogle Scholar
  57. Zhang H, Zhang C, Vincent J, Zala D, Benstaali C, Sainlos M et al (2018) Modulation of AMPA receptor surface diffusion restores hippocampal plasticity and memory in Huntington’s disease models. Nat Commun 9(1):4272CrossRefGoogle Scholar
  58. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Psychiatry, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
  2. 2.Psychiatry in the Region of Southern DenmarkOdense University HospitalOdenseDenmark
  3. 3.Laboratory of Neural Plasticity, Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
  4. 4.Danish Dementia Research Center, Department of Neurology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
  5. 5.Research Laboratory for Stereology and NeuroscienceBispebjerg-Frederiksberg Hospital, Copenhagen University HospitalCopenhagenDenmark
  6. 6.BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations