Cortical plasticity as synaptic mechanism for chronic pain

  • Min ZhuoEmail author
Neurology and Preclinical Neurological Studies - Review Article


Adult brain structures such as the hippocampus are highly plastic to learning and gaining new experiences. Recent studies reveal that cortical areas that respond to sensory noxious stimuli (stimuli that cause pain in humans) are also highly plastic, like the learning-related hippocampus. Long-term potentiation (LTP), a key cellular model for learning and memory, is reported in the anterior cingulate cortex (ACC) and insular cortex (IC), two key cortical areas for pain perception. ACC and IC LTP exist in at least two major forms: presynaptically expressed LTP, and postsynaptically expressed LTP (post-LTP). In this short review, I will review, recent progress made in cortical LTPs, and explore potential roles of other forms of LTPs such as synaptic tagging. Their contribution to chronic pain as well as emotional changes caused by injury will be discussed.


Cortical plasticity Chronic pain Anterior cingulate cortex Long-term potentiation Insular cortex 



Thank Melissa Lepp for proof-reading and editing. M. Z. was supported by Grants from the Canadian Institute for Health Research (CIHR) project Grants (PJT-148648 and 419286).


  1. Bie B, Brown DL, Naguib M (2011) Increased synaptic GluR1 subunits in the anterior cingulate cortex of rats with peripheral inflammation. Eur J Pharmacol 653(1–3):26–31. Google Scholar
  2. Bingol B, Wang C-F, Arnott D, Cheng D, Peng J, Sheng M (2010) Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140(4):567–578. CrossRefGoogle Scholar
  3. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. CrossRefGoogle Scholar
  4. Bliss TVP, Cooke SF (2011) Long-term potentiation and long-term depression: a clinical perspective. Clinics 66(Suppl 1):3–17. CrossRefGoogle Scholar
  5. Bliss TVP, Collingridge GL, Kaang B-K, Zhuo M (2016) Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 17(8):485–496. CrossRefGoogle Scholar
  6. Chen T, Lu J-S, Song Q, Liu M-G, Koga K, Descalzi G, Li Y-Q, Zhuo M (2014a) Pharmacological rescue of cortical synaptic and network potentiation in a mouse model for fragile X syndrome. Neuropsychopharmacology 39(8):1955–1967. CrossRefGoogle Scholar
  7. Chen T, O’Den G, Song Q, Koga K, Zhang M-M, Zhuo M (2014b) Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice. Mol Pain 10:65. Google Scholar
  8. Chen T, Wang W, Dong YL, Zhang MM, Wang J, Koga K, Liao YH, Li JL, Budisantoso T, Shigemoto R, Itakura M, Huganir RL, Li YQ, Zhuo M (2014c) Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the anterior cingulate cortex after peripheral nerve injury. Mol Brain 7:76. CrossRefGoogle Scholar
  9. Drdla R, Gassner M, Gingl E, Sandkühler J (2009) Induction of synaptic long-term potentiation after opioid withdrawal. Science 325(5937):207–210. CrossRefGoogle Scholar
  10. Frey U, Morris RGM (1997) Synaptic tagging and long-term potentiation. Nature 385:533. CrossRefGoogle Scholar
  11. Griggs RB, Laird DE, Donahue RR, Fu W, Taylor BK (2017) Methylglyoxal requires AC1 and TRPA1 to produce pain and spinal neuron activation. Front Neurosci 11:679. CrossRefGoogle Scholar
  12. Jarome TJ, Helmstetter FJ (2014) Protein degradation and protein synthesis in long-term memory formation. Front Mol Neurosci 7:61. CrossRefGoogle Scholar
  13. Kang SJ, Liu M-G, Chen T, Ko H-G, Baek G-C, Lee H-R, Lee K, Collingridge GL, Kaang B-K, Zhuo M (2012) Plasticity of metabotropic glutamate receptor-dependent long-term depression in the anterior cingulate cortex after amputation. J Neurosci 32(33):11318–11329. CrossRefGoogle Scholar
  14. Kang W-B, Yang Q, Guo Y-Y, Wang L, Wang D-S, Cheng Q, Li X-M, Tang J, Zhao J-N, Liu G, Zhuo M, Zhao M-G (2016) Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model. Mol Pain 12:1744806916652409. CrossRefGoogle Scholar
  15. Ko H-G, Choi J-H, Park DI, Kang SJ, Lim C-S, Sim S-E, Shim J, Kim J-I, Kim S, Choi T-H, Ye S, Lee J, Park P, Kim S, Do J, Park J, Islam MA, Kim HJ, Turck CW, Collingridge GL, Zhuo M, Kaang B-K (2018) Rapid turnover of cortical NCAM1 regulates synaptic reorganization after peripheral nerve injury. Cell Rep 22(3):748–759. CrossRefGoogle Scholar
  16. Koga K, Descalzi G, Chen T, Ko H-G, Lu J, Li S, Son J, Kim T, Kwak C, Huganir Richard L, Zhao MG, Kaang B-K, Collingridge Graham L, Zhuo M (2015) Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. Neuron 85(2):377–389. CrossRefGoogle Scholar
  17. Li XYKH, Chen T, Descalzi G, Koga K, Wang H, Kim SS, Shang Y, Kwak C, Park SW, Shim J, Lee K, Collingridge GL, Kaang BK, Zhuo M (2010) Alleviating neuropathic pain hypersensitivity by inhibiting PKMζ in the anterior cingulate cortex. Science 330(6009):1400–1404. CrossRefGoogle Scholar
  18. Li X-H, Matsuura T, Liu R-H, Xue M, Zhuo M (2019) Calcitonin gene-related peptide potentiated the excitatory transmission and network propagation in the anterior cingulate cortex of adult mice. Mol Pain 15:1744806919832718. Google Scholar
  19. Lian B, Vera-Portocarrero L, King T, Ossipov MH, Porreca F (2010) Opioid-induced latent sensitization in a model of non-inflammatory viscerosomatic hypersensitivity. Brain Res 1358:64–70. CrossRefGoogle Scholar
  20. Liauw J, Wu L-J, Zhuo M (2005) Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex. J Neurophysiol 94(1):878–882. CrossRefGoogle Scholar
  21. Liu M-G, Kang SJ, Shi T-Y, Koga K, Zhang M-M, Collingridge GL, Kaang B-K, Zhuo M (2013a) Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. J Neurophysiol 110(2):505–521. CrossRefGoogle Scholar
  22. Liu M-G, Koga K, Guo Y-Y, Kang SJ, Collingridge GL, Kaang B-K, Zhao M-G, Zhuo M (2013b) Long-term depression of synaptic transmission in the adult mouse insular cortex in vitro. Eur J Neurosci 38(8):3128–3145. CrossRefGoogle Scholar
  23. Liu S-B, Zhang M-M, Cheng L-F, Shi J, Lu J-S, Zhuo M (2015) Long-term upregulation of cortical glutamatergic AMPA receptors in a mouse model of chronic visceral pain. Mol Brain 8(1):76. CrossRefGoogle Scholar
  24. Liu M-G, Song Q, Zhuo M (2018) Loss of synaptic tagging in the anterior cingulate cortex after tail amputation in adult mice. J Neurosci. Google Scholar
  25. Miao H-H, Li X-H, Chen Q-Y, Zhuo M (2019) Calcium-stimulated adenylyl cyclase subtype 1 is required for presynaptic long-term potentiation in the insular cortex of adult mice. Mol Pain 15:1744806919842961. CrossRefGoogle Scholar
  26. Qiu S, Zhang M, Liu Y, Guo Y, Zhao H, Song Q, Zhao M, Huganir RL, Luo J, Xu H, Zhuo M (2014) GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex. J Neurosci 34(40):13505–13515. CrossRefGoogle Scholar
  27. Redondo RL, Morris RGM (2010) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12:17. CrossRefGoogle Scholar
  28. Rosenberg T, Gal-Ben-Ari S, Dieterich DC, Kreutz MR, Ziv NE, Gundelfinger ED, Rosenblum K (2014) The roles of protein expression in synaptic plasticity and memory consolidation. Front Mol Neurosci 7:86. CrossRefGoogle Scholar
  29. Song Q, Zheng H-W, Li X-H, Huganir RL, Kuner T, Zhuo M, Chen T (2017) Selective phosphorylation of AMPA receptor contributes to the network of long-term potentiation in the anterior cingulate cortex. J Neurosci 37(35):8534–8548. CrossRefGoogle Scholar
  30. Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6:533. CrossRefGoogle Scholar
  31. Wang H, Xu H, Wu L-J, Kim SS, Chen T, Koga K, Descalzi G, Gong B, Vadakkan KI, Zhang X, Kaang B-K, Zhuo M (2011) Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain. Sci Transl Med 3(65):65ra63–65ra63. CrossRefGoogle Scholar
  32. Wei F, Li P, Zhuo M (1999) Loss of synaptic depression in mammalian anterior cingulate cortex after amputation. J Neurosci 19(21):9346–9354. CrossRefGoogle Scholar
  33. Wei F, Qiu C-S, Kim SJ, Muglia L, Maas JW, Pineda VV, Xu H-M, Chen Z-F, Storm DR, Muglia LJ, Zhuo M (2002) Genetic Elimination of Behavioral Sensitization in Mice Lacking Calmodulin-Stimulated Adenylyl Cyclases. Neuron 36(4):713–726CrossRefGoogle Scholar
  34. Wei F, Wang G-D, Kerchner GA, Kim SJ, Xu H-M, Chen Z-F, Zhuo M (2001) Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 4(2):164–169. CrossRefGoogle Scholar
  35. Xu H, Wu LJ, Wang H, Zhang X, Vadakkan KI, Kim SS, Steenland HW, Zhuo M (2008) Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 28(29):7445–7453. CrossRefGoogle Scholar
  36. Yamanaka M, Matsuura T, Pan H, Zhuo M (2017) Calcium-stimulated adenylyl cyclase subtype 1 (AC1) contributes to LTP in the insular cortex of adult mice. Heliyon 3(7):e00338. CrossRefGoogle Scholar
  37. Yu J, Wang D-S, Bonin RP, Penna A, Alavian-Ghavanini A, Zurek AA, Rauw G, Baker GB, Orser BA (2019) Gabapentin increases expression of δ subunit-containing GABAA receptors. EBioMedicine 42:203–213. CrossRefGoogle Scholar
  38. Zhang M-M, Liu S-B, Chen T, Koga K, Zhang T, Li Y-Q, Zhuo M (2014) Effects of NB001 and gabapentin on irritable bowel syndrome-induced behavioral anxiety and spontaneous pain. Mol Brain 7:47. CrossRefGoogle Scholar
  39. Zhao M-G, Toyoda H, Lee Y-S, Wu L-J, Ko SW, Zhang X-H, Jia Y, Shum F, Xu H, Li B-M, Kaang BK, Zhuo M (2005) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47(6):859–872. CrossRefGoogle Scholar
  40. Zhuo M (2002) Glutamate receptors and persistent pain: targeting forebrain NR2B subunits. Drug Discov Today 7(4):259–267. CrossRefGoogle Scholar
  41. Zhuo M (2008) Cortical excitation and chronic pain. Trends Neurosci 31(4):199–207. CrossRefGoogle Scholar
  42. Zhuo M (2012) Targeting neuronal adenylyl cyclase for the treatment of chronic pain. Drug Discov Today 17(11):573–582. CrossRefGoogle Scholar
  43. Zhuo M (2014) Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos Trans R Soc B Biol Sci 369(1633):20130146. CrossRefGoogle Scholar
  44. Zhuo M (2016a) Contribution of synaptic plasticity in the insular cortex to chronic pain. Neuroscience 338:220–229. CrossRefGoogle Scholar
  45. Zhuo M (2016b) Neural mechanisms underlying anxiety–chronic pain interactions. Trends Neurosci 39(3):136–145. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations