Advertisement

Biomarkers of Parkinson’s disease: 20 years later

  • Rezzak Yilmaz
  • Franziska Hopfner
  • Thilo van Eimeren
  • Daniela BergEmail author
Neurology and Preclinical Neurological Studies - Review Article

Abstract

Despite intensive effort, biomarker research for the detection of prodromal stage, diagnosis and progression of Parkinson’s disease (PD) falls short of expectations. This article reviews the attempts in the last 20 years to find a biomarker, addresses challenges along the biomarker search and suggests the steps that should be taken to overcome these challenges. Although several biomarkers are currently available, none of them is specific enough for diagnosis, prediction of future PD or disease progression. The main reason for the failure finding a strong biomarker seems to be drastic heterogeneity of PD, which exhibits itself in all domains; from the clinic to pathophysiology or genetics. The diversity in patient selection, assessment methods or outcomes in biomarker studies also limit the interpretation and generalizability of the data. In search of a reliable biomarker, consideration of novel approaches encompassing individual demographic, clinical, genetic, epigenetic and environmental differences, employment of strategies enabling marker combinations, designing multicenter studies with compatible assessment methods, integration of data from preclinical domains and utilization of novel technology-based assessments are necessary.

Keywords

Parkinson’s disease Biomarker Prodromal Parkinson’s disease 

Notes

References

  1. Andreasen N, Vanmechelen E, Van de Voorde A et al (1998) Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community based follow up study. J Neurol Neurosurg Psychiatry 64:298–305CrossRefGoogle Scholar
  2. Berg D, Postuma RB, Bloem B et al (2014) Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov Disord 29:454–462.  https://doi.org/10.1002/mds.25844 CrossRefGoogle Scholar
  3. Berg D, Postuma RB, Adler CH et al (2015) MDS research criteria for prodromal Parkinson’s disease. Mov Disord 30:1600–1611.  https://doi.org/10.1002/mds.26431 CrossRefGoogle Scholar
  4. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95.  https://doi.org/10.1067/mcp.2001.113989 CrossRefGoogle Scholar
  5. Braak H, Del Tredici K, Rüb U et al Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211Google Scholar
  6. Chahine LM, Stern MB (2017) Parkinson’s disease biomarkers: where are we and where do we go next? Mov Disord Clin Pract 4:796–805.  https://doi.org/10.1002/mdc3.12545 CrossRefGoogle Scholar
  7. Chen-Plotkin AS, Zetterberg H (2018) Updating our definitions of Parkinson’s disease for a molecular age. J Parkinson’s Dis 8:S53–S57.  https://doi.org/10.3233/JPD-181487 CrossRefGoogle Scholar
  8. Davis MY, Johnson CO, Leverenz JB et al (2016) Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol 73:1217–1224.  https://doi.org/10.1001/jamaneurol.2016.2245 CrossRefGoogle Scholar
  9. De Marzi R, Seppi K, Högl B et al (2016) Loss of dorsolateral nigral hyperintensity on 3.0 T susceptibility-weighted imaging in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol 79:1026–1030.  https://doi.org/10.1002/ana.24646 CrossRefGoogle Scholar
  10. Doppler K, Volkmann J, Sommer C (2016) Skin biopsies in the differential diagnosis of parkinsonism: are we ready for simplified protocols? Brain 139:e5.  https://doi.org/10.1093/brain/awv251 CrossRefGoogle Scholar
  11. Espay AJ, Brundin P, Lang AE (2017) Precision medicine for disease modification in Parkinson disease. Nat Rev Neurol 13:119–126.  https://doi.org/10.1038/nrneurol.2016.196 CrossRefGoogle Scholar
  12. Fereshtehnejad S-M, Montplaisir JY, Pelletier A et al (2017) Validation of the MDS research criteria for prodromal Parkinson’s disease: longitudinal assessment in a REM sleep behavior disorder (RBD) cohort. Mov Disord 32:865–873.  https://doi.org/10.1002/mds.26989 CrossRefGoogle Scholar
  13. Frosini D, Cosottini M, Donatelli G et al (2017) Seven tesla MRI of the substantia nigra in patients with rapid eye movement sleep behavior disorder. Parkinsonism Relat Disord 43:105–109.  https://doi.org/10.1016/j.parkreldis.2017.08.002 CrossRefGoogle Scholar
  14. Fullard ME, Morley JF, Duda JE (2017) Olfactory dysfunction as an early biomarker in Parkinson’s disease. Neurosci Bull 33:515–525.  https://doi.org/10.1007/s12264-017-0170-x CrossRefGoogle Scholar
  15. Funke C, Schneider SA, Berg D, Kell DB (2013) Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int 62:637–652.  https://doi.org/10.1016/j.neuint.2012.11.015 CrossRefGoogle Scholar
  16. García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C et al (2013) The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain 136:2120–2129.  https://doi.org/10.1093/brain/awt152 CrossRefGoogle Scholar
  17. Gardner RC, Burke JF, Nettiksimmons J et al (2015) Traumatic brain injury in later life increases risk for Parkinson disease. Ann Neurol 77:987–995.  https://doi.org/10.1002/ana.24396 CrossRefGoogle Scholar
  18. Gardner RC, Byers AL, Barnes DE et al (2018) Mild TBI and risk of Parkinson disease. Neurology 90:e1771–e1779.  https://doi.org/10.1212/WNL.0000000000005522 CrossRefGoogle Scholar
  19. Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752CrossRefGoogle Scholar
  20. Goldman SM, Kamel F, Ross GW et al (2012) Head injury, alpha-synuclein Rep1, and Parkinson’s disease. Ann Neurol 71:40–48.  https://doi.org/10.1002/ana.22499 CrossRefGoogle Scholar
  21. Goldstein DS, Holmes C, Bentho O et al (2008) Biomarkers to detect central dopamine deficiency and distinguish Parkinson disease from multiple system atrophy. Parkinsonism Relat Disord 14:600–607.  https://doi.org/10.1016/j.parkreldis.2008.01.010 CrossRefGoogle Scholar
  22. Goldstein DS, Holmes C, Sharabi Y (2012) Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain 135:1900–1913.  https://doi.org/10.1093/brain/aws055 CrossRefGoogle Scholar
  23. Halbgebauer S, Öckl P, Wirth K et al (2016) Protein biomarkers in Parkinson’s disease: focus on cerebrospinal fluid markers and synaptic proteins. Mov Disord 31:848–860.  https://doi.org/10.1002/mds.26635 CrossRefGoogle Scholar
  24. Hansen C, Sanchez-Ferro A, Maetzler W (2018) How mobile health technology and electronic health records will change care of patients with Parkinson’s disease. J Parkinson’s Dis 8:S41–S45.  https://doi.org/10.3233/JPD-181498 CrossRefGoogle Scholar
  25. Hansson O, Zetterberg H, Buchhave P et al (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234.  https://doi.org/10.1016/S1474-4422(06)70355-6 CrossRefGoogle Scholar
  26. Hansson O, Hall S, Ohrfelt A et al (2014) Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res Ther 6:25.  https://doi.org/10.1186/alzrt255 CrossRefGoogle Scholar
  27. Heinzel S, Lerche S, Maetzler W, Berg D (2017) Global, yet incomplete overview of cohort studies in Parkinson’s disease. J Parkinson’s Dis 7:423–432.  https://doi.org/10.3233/JPD-171100 CrossRefGoogle Scholar
  28. Hentati F, Trinh J, Thompson C et al (2014) LRRK2 parkinsonism in Tunisia and Norway: a comparative analysis of disease penetrance. Neurology 83:568–569.  https://doi.org/10.1212/WNL.0000000000000675 CrossRefGoogle Scholar
  29. Herbert MK, Aerts MB, Beenes M et al (2015) CSF neurofilament light chain but not FLT3 ligand discriminates parkinsonian disorders. Front Neurol 6:91.  https://doi.org/10.3389/fneur.2015.00091 CrossRefGoogle Scholar
  30. Hong Z, Shi M, Chung KA et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726.  https://doi.org/10.1093/brain/awq008 CrossRefGoogle Scholar
  31. Hopfner F, Künstner A, Müller SH et al (2017) Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 1667:41–45.  https://doi.org/10.1016/j.brainres.2017.04.019 CrossRefGoogle Scholar
  32. Jennings D, Siderowf A, Stern M et al (2017) Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort. JAMA Neurol 74:933–940.  https://doi.org/10.1001/jamaneurol.2017.0985 CrossRefGoogle Scholar
  33. Khalil M, Teunissen CE, Otto M et al (2018) Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 14:577–589.  https://doi.org/10.1038/s41582-018-0058-z CrossRefGoogle Scholar
  34. Kim R, Kim H-J, Kim A et al (2018) Peripheral blood inflammatory markers in early Parkinson’s disease. J Clin Neurosci 58:30–33.  https://doi.org/10.1016/j.jocn.2018.10.079 CrossRefGoogle Scholar
  35. Knudsen K, Borghammer P (2018) Imaging the Autonomic nervous system in parkinson’s disease. Curr Neurol Neurosci Rep 18:79.  https://doi.org/10.1007/s11910-018-0889-4 CrossRefGoogle Scholar
  36. Knudsen K, Fedorova TD, Hansen AK et al (2018) In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case–control study. Lancet Neurol 17:618–628.  https://doi.org/10.1016/S1474-4422(18)30162-5 CrossRefGoogle Scholar
  37. Lewis SJG, Foltynie T, Blackwell AD et al (2005) Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry 76:343–348.  https://doi.org/10.1136/jnnp.2003.033530 CrossRefGoogle Scholar
  38. LeWitt P, Schultz L, Auinger P et al (2011) CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Res 1408:88–97.  https://doi.org/10.1016/j.brainres.2011.06.057 CrossRefGoogle Scholar
  39. Lewitt PA, Li J, Lu M et al (2013) 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord 28:1653–1660.  https://doi.org/10.1002/mds.25555 CrossRefGoogle Scholar
  40. Lin Y-S, Lee W-J, Wang S-J, Fuh J-L (2018) Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci Rep 8:17368.  https://doi.org/10.1038/s41598-018-35766-w CrossRefGoogle Scholar
  41. Mahlknecht P, Gasperi A, Willeit P et al (2016) Prodromal Parkinson’s disease as defined per MDS research criteria in the general elderly community. Mov Disord 31:1405–1408.  https://doi.org/10.1002/mds.26674 CrossRefGoogle Scholar
  42. Marek K, Jennings D, Lasch S et al (2011) The Parkinson progression marker initiative (PPMI). Prog Neurobiol 95:629–635.  https://doi.org/10.1016/j.pneurobio.2011.09.005 CrossRefGoogle Scholar
  43. Marras C, Lang A (2013) Parkinson’s disease subtypes: lost in translation? J Neurol Neurosurg Psychiatry 84:409–415.  https://doi.org/10.1136/jnnp-2012-303455 CrossRefGoogle Scholar
  44. Marras C, Rochon P, Lang AE (2002) Predicting motor decline and disability in Parkinson disease. Arch Neurol 59:1724.  https://doi.org/10.1001/archneur.59.11.1724 CrossRefGoogle Scholar
  45. Meles SK, Renken RJ, Janzen A et al (2018) The metabolic pattern of idiopathic REM sleep behavior disorder reflects early-stage parkinson disease. J Nucl Med 59:1437–1444.  https://doi.org/10.2967/jnumed.117.202242 CrossRefGoogle Scholar
  46. Mondello S, Constantinescu R, Zetterberg H et al (2014) CSF α-synuclein and UCH-L1 levels in Parkinson’s disease and atypical parkinsonian disorders. Parkinsonism Relat Disord 20:382–387.  https://doi.org/10.1016/j.parkreldis.2014.01.011 CrossRefGoogle Scholar
  47. Navarro-Sánchez L, Águeda-Gómez B, Aparicio S, Pérez-Tur J (2018) Epigenetic study in Parkinson’s disease: a pilot analysis of DNA methylation in candidate genes in brain. Cells 7:150.  https://doi.org/10.3390/cells7100150 CrossRefGoogle Scholar
  48. Nilsonne G, Lekander M (2017) Circulating interleukin 6 in Parkinson disease. JAMA Neurol 74:607–608.  https://doi.org/10.1001/jamaneurol.2017.0037 CrossRefGoogle Scholar
  49. Obeso JA, Stamelou M, Goetz CG et al (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 32:1264–1310.  https://doi.org/10.1002/mds.27115 CrossRefGoogle Scholar
  50. Parkinson J (1817) An essay on the shaking palsy. Whittingham and Rowland Sherwood, Neely and Jones, LondonGoogle Scholar
  51. Pilotto A, Heinzel S, Suenkel U et al (2017) Application of the movement disorder society prodromal Parkinson’s disease research criteria in 2 independent prospective cohorts. Mov Disord.  https://doi.org/10.1002/mds.27035 Google Scholar
  52. Ping L, Duong DM, Yin L et al (2018) Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s disease. Sci data 5:180036.  https://doi.org/10.1038/sdata.2018.36 CrossRefGoogle Scholar
  53. Postuma RB, Berg D (2016) Advances in markers of prodromal Parkinson disease. Nat Rev Neurol 12:622–634.  https://doi.org/10.1038/nrneurol.2016.152 CrossRefGoogle Scholar
  54. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601.  https://doi.org/10.1002/mds.26424 CrossRefGoogle Scholar
  55. Postuma RB, Poewe W, Litvan I et al (2018) Validation of the MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 33:1601–1608.  https://doi.org/10.1002/mds.27362 CrossRefGoogle Scholar
  56. Pyatigorskaya N, Gaurav R, Arnaldi D et al (2017) Magnetic resonance imaging biomarkers to assess substantia nigra damage in idiopathic rapid eye movement sleep behavior disorder. Sleep.  https://doi.org/10.1093/sleep/zsx149 Google Scholar
  57. Rahmani F, Saghazadeh A, Rahmani M et al (2019) Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: a systematic review and meta-analysis. Brain Res 1704:127–136.  https://doi.org/10.1016/j.brainres.2018.10.006 CrossRefGoogle Scholar
  58. Rolinski M, Griffanti L, Piccini P et al (2016) Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease. Brain 139:2224–2234.  https://doi.org/10.1093/brain/aww124 CrossRefGoogle Scholar
  59. Saal K-A, Galter D, Roeber S et al (2017) Altered expression of growth associated protein-43 and Rho kinase in human patients with Parkinson’s disease. Brain Pathol 27:13–25.  https://doi.org/10.1111/bpa.12346 CrossRefGoogle Scholar
  60. Santiago JA, Bottero V, Potashkin JA (2018) Evaluation of RNA blood biomarkers in the Parkinson’s disease biomarkers program. Front Aging Neurosci 10:157.  https://doi.org/10.3389/fnagi.2018.00157 CrossRefGoogle Scholar
  61. Saunders-Pullman R, Mirelman A, Alcalay RN et al (2018) Progression in the LRRK2-asssociated Parkinson disease population. JAMA Neurol 75:312–319.  https://doi.org/10.1001/jamaneurol.2017.4019 CrossRefGoogle Scholar
  62. Scheperjans F, Derkinderen P, Borghammer P (2018) The gut and Parkinson’s disease: hype or hope? J Parkinson’s Dis 8:S31–S39.  https://doi.org/10.3233/JPD-181477 CrossRefGoogle Scholar
  63. Siderowf A, Xie SX, Hurtig H et al (2010) CSF amyloid 1–42 predicts cognitive decline in Parkinson disease. Neurology 75:1055–1061.  https://doi.org/10.1212/WNL.0b013e3181f39a78 CrossRefGoogle Scholar
  64. Smith AR, Smith RG, Burrage J et al (2019) A cross-brain regions study of ANK1 DNA methylation in different neurodegenerative diseases. Neurobiol Aging 74:70–76.  https://doi.org/10.1016/j.neurobiolaging.2018.09.024 CrossRefGoogle Scholar
  65. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466.  https://doi.org/10.1097/COH.0b013e32833ed177 CrossRefGoogle Scholar
  66. Su X, Chu Y, Kordower JH et al (2015) PGC-1α promoter methylation in Parkinson’s disease. PLoS One 10:e0134087.  https://doi.org/10.1371/journal.pone.0134087 CrossRefGoogle Scholar
  67. Tokuda T, Qureshi MM, Ardah MT et al (2010) Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75:1766–1772.  https://doi.org/10.1212/WNL.0b013e3181fd613b CrossRefGoogle Scholar
  68. Trupp M, Jonsson P, Ohrfelt A et al (2014) Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinson’s Dis 4:549–560.  https://doi.org/10.3233/JPD-140389 Google Scholar
  69. van Nuenen BFL, van Eimeren T, van der Vegt JPM et al (2009) Mapping preclinical compensation in Parkinson’s disease: an imaging genomics approach. Mov Disord 24:S703–S710.  https://doi.org/10.1002/mds.22635 CrossRefGoogle Scholar
  70. van Dijk KD, Persichetti E, Chiasserini D et al (2013) Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson’s disease. Mov Disord 28:747–754.  https://doi.org/10.1002/mds.25495 CrossRefGoogle Scholar
  71. Vazquez Roque M, Bouras EP (2015) Epidemiology and management of chronic constipation in elderly patients. Clin Interv Aging 10:919–930.  https://doi.org/10.2147/CIA.S54304 Google Scholar
  72. Vilas D, Iranzo A, Tolosa E et al (2016) Assessment of α-synuclein in submandibular glands of patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case–control study. Lancet Neurol 15:708–718.  https://doi.org/10.1016/S1474-4422(16)00080-6 CrossRefGoogle Scholar
  73. Visanji NP, Mollenhauer B, Beach TG et al (2017) The systemic synuclein sampling study: toward a biomarker for Parkinson’s disease. Biomark Med 11:359–368.  https://doi.org/10.2217/bmm-2016-0366 CrossRefGoogle Scholar
  74. Vos M, Esposito G, Edirisinghe JN et al (2012) Vitamin K2 is a mitochondrial electron carrier that rescues Pink1 deficiency. Science 336:1306–1310.  https://doi.org/10.1126/science.1218632 CrossRefGoogle Scholar
  75. Williams-Gray CH, Wijeyekoon R, Yarnall AJ et al (2016) Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Mov Disord 31:995–1003.  https://doi.org/10.1002/mds.26563 CrossRefGoogle Scholar
  76. Willkommen D, Lucio M, Moritz F et al (2018) Metabolomic investigations in cerebrospinal fluid of Parkinson’s disease. PLoS One 13:e0208752.  https://doi.org/10.1371/journal.pone.0208752 CrossRefGoogle Scholar
  77. Wüllner U, Kaut O, deBoni L et al (2016) DNA methylation in Parkinson’s disease. J Neurochem 139:108–120.  https://doi.org/10.1111/jnc.13646 CrossRefGoogle Scholar
  78. Zetterberg H, Schott JM (2019) Biomarkers for Alzheimer’s disease beyond amyloid and tau. Nat Med 25:201–203.  https://doi.org/10.1038/s41591-019-0348-z CrossRefGoogle Scholar
  79. Zhu Z-G, Sun M-X, Zhang W-L et al (2017) The efficacy and safety of coenzyme Q10 in Parkinson’s disease: a meta-analysis of randomized controlled trials. Neurol Sci 38:215–224.  https://doi.org/10.1007/s10072-016-2757-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Rezzak Yilmaz
    • 1
  • Franziska Hopfner
    • 1
    • 2
  • Thilo van Eimeren
    • 3
    • 4
    • 5
  • Daniela Berg
    • 1
    • 6
    Email author
  1. 1.Department of NeurologyChristian-Albrechts-University of KielKielGermany
  2. 2.Department of Psychiatry and PsychotherapyKlinikum der Universität München, University Hospital, LMU MunichMunichGermany
  3. 3.Department of Neurology, Faculty of MedicineUniversity of CologneCologneGermany
  4. 4.Department of Nuclear Medicine, Faculty of MedicineUniversity of CologneCologneGermany
  5. 5.German Center for Neurodegenerative Diseases (DZNE)Bonn-CologneGermany
  6. 6.Department of Neurodegeneration, Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany

Personalised recommendations