Advertisement

Stressful life events are associated with striatal dopamine receptor availability in alcohol dependence

  • M. SeboldEmail author
  • G. Spitta
  • T. Gleich
  • T. Dembler-Stamm
  • O. Butler
  • K. Zacharias
  • S. Aydin
  • M. Garbusow
  • M. Rapp
  • F. Schubert
  • R. Buchert
  • J. Gallinat
  • A. Heinz
Psychiatry and Preclinical Psychiatric Studies - Short communication

Abstract

Stress plays a key role in modulating addictive behavior and can cause relapse following periods of abstinence. Common effects of stress and alcohol on the dopaminergic system have been suggested, although the precise mechanisms are unclear. Here, we investigated 20 detoxified alcohol-dependent patients and 19 matched healthy controls and assessed striatal D2/D3 availability using [18F]-fallypride positron emission tomography and stressful life events. We found a strong association between striatal D2/D3 availability and stress in patients, but not in healthy controls. Interestingly, we found increased D2/D3 receptor availability in patients with higher stress levels. This mirrors complex interactions between stress and alcohol intake in animal studies and emphasizes the importance to investigate stress exposure in neurobiological studies of addiction.

Clinical trial registration

NCT01679145.

Keywords

Stressful life events Dopamine D2/D3 receptor Positron emission tomography Striatum Alcohol dependence 

Notes

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, FOR 1617: grants HE 2597/14-1, HE 2597/15-1, HE 2597/14 -2, HE 2597/15-2, GA 707/6-1, RA 1047/2-1, RA 1047/2-2).

References

  1. Adinoff B, Ruether K, Krebaum S, Iranmanesh A, Williams MJ (2003) Increased salivary cortisol concentrations during chronic alcohol intoxication in a naturalistic clinical sample of men alcohol. Clin Exp Res 27:1420–1427.  https://doi.org/10.1097/01.ALC.0000087581.13912.64 CrossRefGoogle Scholar
  2. Albrecht DS, Kareken DA, Yoder KK (2013) Effects of smoking on D-2/D-3 striatal receptor availability in alcoholics and social drinkers. Brain Imaging Behav 7:326–334.  https://doi.org/10.1007/s11682-013-9233-4 CrossRefGoogle Scholar
  3. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Association, WashingtonGoogle Scholar
  4. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851.  https://doi.org/10.1016/j.neuroimage.2005.02.018 CrossRefGoogle Scholar
  5. Beck A et al (2012) Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch Gen Psychiatry 69:842–852.  https://doi.org/10.1001/archgenpsychiatry.2011.2026 CrossRefGoogle Scholar
  6. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ (2009) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199:89–102.  https://doi.org/10.1016/j.bbr.2008.09.027 CrossRefGoogle Scholar
  7. Booij L et al (2016) Dopamine cross-sensitization between psychostimulant drugs and stress in healthy male volunteers. Transl Psychiatry 6:e740.  https://doi.org/10.1038/tp.2016.6 CrossRefGoogle Scholar
  8. Cabib S, Giardino L, Calza L, Zanni M, Mele A, Puglisi-Allegra S (1998) Stress promotes major changes in dopamine receptor densities within the mesoaccumbens, and nigrostriatal systems. Neuroscience 84:193–200CrossRefGoogle Scholar
  9. Campus P, Canterini S, Orsini C, Fiorenza MT, Puglisi-Allegra S, Cabib S (2017) Stress-induced reduction of dorsal striatal D2 dopamine receptors prevents retention of a newly acquired adaptive coping. Strategy Front Pharmacol 8:621.  https://doi.org/10.3389/fphar.2017.00621 CrossRefGoogle Scholar
  10. Charlet K, Rosenthal A, Lohoff FW, Heinz A, Beck A (2018) Imaging resilience and recovery in alcohol dependence. Addiction.  https://doi.org/10.1111/add.14259 Google Scholar
  11. Conway KP, Swendsen J, Husky MM, He JP, Merikangas KR (2016) Association of lifetime mental disorders and subsequent alcohol and illicit drug use: results from the national comorbidity survey-adolescent supplement. J Am Acad Child Adolesc Psychiatry 55:280–288.  https://doi.org/10.1016/j.jaac.2016.01.006 CrossRefGoogle Scholar
  12. Dalley JW et al (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270.  https://doi.org/10.1126/science.1137073 CrossRefGoogle Scholar
  13. de Jong JW et al (2015) Reducing ventral tegmental dopamine D2 receptor expression selectively boosts. Incent Motivat Neuropsychopharmacol 40:2085–2095.  https://doi.org/10.1038/npp.2015.60 CrossRefGoogle Scholar
  14. Delis F, Thanos PK, Rombola C, Rosko L, Grandy D, Wang GJ, Volkow ND (2013) Chronic mild stress increases alcohol intake in mice with low dopamine D2 receptor levels. Behav Neurosci 127:95–105.  https://doi.org/10.1037/a0030750 CrossRefGoogle Scholar
  15. Delis F, Rombola C, Bellezza R, Rosko L, Grandy DK, Volkow ND, Thanos PK (2015) Regulation of ethanol intake under chronic mild stress: roles of dopamine receptors and transporters. Front Behav Neurosci 9:118.  https://doi.org/10.3389/fnbeh.2015.00118 CrossRefGoogle Scholar
  16. Duncan E et al (2007) An fMRI study of the interaction of stress and cocaine cues on cocaine craving in cocaine-dependent men. Am J Addict 16:174–182.  https://doi.org/10.1080/10550490701375285 CrossRefGoogle Scholar
  17. Erb S, Shaham Y, Stewart J (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology (Berl) 128:408–412CrossRefGoogle Scholar
  18. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489.  https://doi.org/10.1038/nn1579 CrossRefGoogle Scholar
  19. Fehr C et al (2008) Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am J Psychiatry 165:507–514.  https://doi.org/10.1176/appi.ajp.2007.07020352 CrossRefGoogle Scholar
  20. Haleem DJ (1996) Adaptation to repeated restraint stress in rats: failure of ethanol-treated rats to adapt in the stress schedule. Alcohol Alcohol 31:471–477CrossRefGoogle Scholar
  21. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The fagerstrom test for nicotine dependence: a revision of the fagerstrom tolerance questionnaire. Br J Addict 86:1119–1127CrossRefGoogle Scholar
  22. Heinz A et al (1996) Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients. Arch Gen Psychiatry 53:1123–1128CrossRefGoogle Scholar
  23. Heinz A et al (2004) Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161:1783–1789.  https://doi.org/10.1176/appi.ajp.161.10.1783 CrossRefGoogle Scholar
  24. Heinz A et al (2005) Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 162:1515–1520.  https://doi.org/10.1176/appi.ajp.162.8.1515 CrossRefGoogle Scholar
  25. Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A (2011) Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 12:400–413.  https://doi.org/10.1038/nrn3042 CrossRefGoogle Scholar
  26. Hietala J, West C, Syvalahti E, Nagren K, Lehikoinen P, Sonninen P, Ruotsalainen U (1994) Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacol (Berl) 116:285–290CrossRefGoogle Scholar
  27. Hirth N et al (2016) Convergent evidence from alcohol-dependent humans and rats for a hyperdopaminergic state in protracted abstinence. Proc Natl Acad Sci USA 113:3024–3029.  https://doi.org/10.1073/pnas.1506012113 CrossRefGoogle Scholar
  28. Holmes TH, Rahe RH (1967) The Social Readjustment Rating Scale. J Psychosom Res 11:213–218CrossRefGoogle Scholar
  29. Hua K et al (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39:336–347.  https://doi.org/10.1016/j.neuroimage.2007.07.053 CrossRefGoogle Scholar
  30. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for imaging of reversibly binding radioligandsInnis. J Cereb Blood Flow Metab 27(9):1533–1539CrossRefGoogle Scholar
  31. Ishibashi K, Robertson CL, Mandelkern MA, Morgan AT, London ED (2013) The simplified reference tissue model with 18F-fallypride positron emission tomography: choice of reference region. Mol Imaging.  https://doi.org/10.2310/7290.2013.00065 Google Scholar
  32. Jeanblanc J (2015) Comorbidity between psychiatric diseases and alcohol use disorders: impact of adolescent alcohol consumption. Curr Addict Rep 2:293–301.  https://doi.org/10.1007/s40429-015-0076-5 CrossRefGoogle Scholar
  33. Kamp F et al (2018) Effects of sedative drug use on the dopamine system: a systematic review and meta-analysis of in vivo neuroimaging studies. Neuropsychopharmacology.  https://doi.org/10.1038/s41386-018-0191-9 Google Scholar
  34. Kivlahan DR, Sher KJ, Donovan DM (1989) The alcohol dependence scale: a validation study among inpatient alcoholics. J Stud Alcohol 50:170–175CrossRefGoogle Scholar
  35. Lovallo WR, Dickensheets SL, Myers DA, Thomas TL, Nixon SJ (2000) Blunted stress cortisol response in abstinent alcoholic and polysubstance-abusing men alcohol. Clin Exp Res 24:651–658CrossRefGoogle Scholar
  36. Mann K, Ackermann K (2000) Die OCDS-G: Psychometrische Kennwerte der deutschen Version der Obsessive Compulsive Drinking Scale. [The OCDS-G: Psychometric Characteristics of the German Version of the Obsessive Compulsive Drinking Scale]. Sucht Zeitschrift für Wissenschaft Praxis 46:90–100.  https://doi.org/10.1024/suc.2000.46.2.90 CrossRefGoogle Scholar
  37. Martinez D et al (2003) Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23:285–300.  https://doi.org/10.1097/01.WCB.0000048520.34839.1A CrossRefGoogle Scholar
  38. Martinez D et al (2005) Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 58:779–786.  https://doi.org/10.1016/j.biopsych.2005.04.044 CrossRefGoogle Scholar
  39. Mawlawi O et al (2001) Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 21:1034–1057.  https://doi.org/10.1097/00004647-200109000-00002 CrossRefGoogle Scholar
  40. Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP (1998) Effect of cocaine self-administration on dopamine D2 receptors in rhesus, monkeys. Synapse 30:88–96.  https://doi.org/10.1002/(SICI)1098-2396(199809)30:1%3C88::AID-SYN11%3E3.0.CO;2-L CrossRefGoogle Scholar
  41. Moreira-Silva D, Morais-Silva G, Fernandes-Santos J, Planeta CS, Marin MT (2014) Stress abolishes the effect of previous chronic ethanol consumption on drug place preference and on the mesocorticolimbic brain pathway alcohol. Clin Exp Res 38:1227–1236.  https://doi.org/10.1111/acer.12388 CrossRefGoogle Scholar
  42. Morgan D et al (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174.  https://doi.org/10.1038/nn798 CrossRefGoogle Scholar
  43. Mukherjee J, Yang ZY, Das MK, Brown T (1995) Fluorinated benzamide neuroleptics–III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2, 3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol 22:283–296CrossRefGoogle Scholar
  44. Nader MA et al (2002) Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: initial and chronic exposure. Neuropsychopharmacology 27:35–46.  https://doi.org/10.1016/S0893-133X(01)00427-4 CrossRefGoogle Scholar
  45. Nahum M et al (2017) Immediate mood scaler: tracking symptoms of depression and anxiety using a novel mobile mood scale. JMIR Mhealth Uhealth 5:e44.  https://doi.org/10.2196/mhealth.6544 CrossRefGoogle Scholar
  46. Okita K, Mandelkern MA, London ED (2016) Cigarette use and striatal dopamine D2/3 receptors: possible role in the link between smoking and nicotine dependence Int J Neuropsychoph.  https://doi.org/10.1093/ijnpp/pyw074 Google Scholar
  47. Porrino LJ, Daunais JB, Smith HR, Nader MA (2004a) The expanding effects of cocaine: studies in a nonhuman primate model of cocaine self-administration. Neurosci Biobehav Rev 27:813–820.  https://doi.org/10.1016/j.neubiorev.2003.11.013 CrossRefGoogle Scholar
  48. Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004b) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 24:3554–3562.  https://doi.org/10.1523/JNEUROSCI.5578-03.2004 CrossRefGoogle Scholar
  49. Rickard N, Arjmand HA, Bakker D, Seabrook E (2016) Development of a mobile phone app to support self-monitoring of emotional well-being: a mental health digital innovation. JMIR Ment Health 3:e49.  https://doi.org/10.2196/mental.6202 CrossRefGoogle Scholar
  50. Rominger A et al (2012) [18F]Fallypride PET measurement of striatal and extrastriatal dopamine D 2/3 receptor availability in recently abstinent alcoholics. Addict Biol 17:490–503.  https://doi.org/10.1111/j.1369-1600.2011.00355.x CrossRefGoogle Scholar
  51. Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582CrossRefGoogle Scholar
  52. Salas R, De Biasi M (2008) Opposing actions of chronic stress and chronic nicotine on striatal function in mice. Neurosci Lett 440:32–34.  https://doi.org/10.1016/j.neulet.2008.05.038 CrossRefGoogle Scholar
  53. Scully JA, Tosi H, Banning K (2000) Life event checklists: revisiting the social readjustment rating scale after 30 years educational and psychological. Measurement 60:864–876.  https://doi.org/10.1177/00131640021970952 Google Scholar
  54. Shields GS, Slavich GM (2017) Lifetime stress exposure and health: a review of contemporary assessment methods and biological mechanisms. Soc Personal Psychol Compass.  https://doi.org/10.1111/spc3.12335 Google Scholar
  55. Sim HR et al (2013) Role of dopamine D2 receptors in plasticity of stress-induced addictive behaviours. Nat Commun 4:1579.  https://doi.org/10.1038/ncomms2598 CrossRefGoogle Scholar
  56. Sinha R, Fuse T, Aubin LR, O’Malley SS (2000) Psychological stress, drug-related cues and cocaine craving. Psychopharmacology (Berl) 152:140–148CrossRefGoogle Scholar
  57. Sinha R, Fox HC, Hong KA, Bergquist K, Bhagwagar Z, Siedlarz KM (2009) Enhanced negative emotion and alcohol craving, and altered physiological responses following stress and cue exposure in alcohol dependent individuals. Neuropsychopharmacology 34:1198–1208.  https://doi.org/10.1038/npp.2008.78 CrossRefGoogle Scholar
  58. Sinha R, Fox HC, Hong KI, Hansen J, Tuit K, Kreek MJ (2011) Effects of adrenal sensitivity, stress- and cue-induced craving, and anxiety on subsequent alcohol relapse and treatment outcomes. Arch Gen Psychiatry 68:942–952.  https://doi.org/10.1001/archgenpsychiatry.2011.49 CrossRefGoogle Scholar
  59. Slavich GM, Shields GS (2018) Assessing lifetime stress exposure using the stress and adversity inventory for adults (Adult STRAIN): an overview and initial. Validat Psychosom Med 80:17–27.  https://doi.org/10.1097/PSY.0000000000000534 CrossRefGoogle Scholar
  60. Slifstein M et al (2004) In vivo affinity of [18F]fallypride for striatal and extrastriatal dopamine D2 receptors in nonhuman primates. Psychopharmacol (Berl) 175:274–286.  https://doi.org/10.1007/s00213-004-1830-x CrossRefGoogle Scholar
  61. Slifstein M et al (2010) Striatal and extrastriatal dopamine release measured with PET and [(18)F] fallypride. Synapse 64:350–362.  https://doi.org/10.1002/syn.20734 CrossRefGoogle Scholar
  62. Spreckelmeyer KN et al (2011) Opiate-induced dopamine release is modulated by severity of alcohol dependence: an [(18)F]fallypride positron emission tomography study. Biol Psychiatry 70:770–776.  https://doi.org/10.1016/j.biopsych.2011.05.035 CrossRefGoogle Scholar
  63. Sullivan JT, Sykora K, Schneiderman J, Naranjo CA, Sellers EM (1989) Assessment of alcohol withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). Br J Addict 84:1353–1357CrossRefGoogle Scholar
  64. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48:471–480Google Scholar
  65. Thanos PK et al (2001) Overexpression of dopamine D2 receptors reduces alcohol self-administration. J Neurochem 78:1094–1103CrossRefGoogle Scholar
  66. Thiruchselvam T, Malik S, Le Foll B (2017) A review of positron emission tomography studies exploring the dopaminergic system in substance use with a focus on tobacco as a co-variate. Am J Drug Alcohol Abuse 43:197–214.  https://doi.org/10.1080/00952990.2016.1257633 CrossRefGoogle Scholar
  67. Tsukada H, Ohba H, Nishiyama S, Kakiuchi T (2011) Differential effects of stress on [(1)(1)C]raclopride and [(1)(1)C]MNPA binding to striatal D(2)/D(3) dopamine receptors: a PET study in conscious monkeys. Synapse 65:84–89.  https://doi.org/10.1002/syn.20845 CrossRefGoogle Scholar
  68. Volkow ND et al (1996) Decreases in dopamine receptors but not in dopamine transporters in alcoholics alcohol. Clin Exp Res 20:1594–1598CrossRefGoogle Scholar
  69. Volkow ND et al (2002) Effects of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study. Psychiatry Res 116:163–172CrossRefGoogle Scholar
  70. Volkow ND et al (2007) Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci 27:12700–12706.  https://doi.org/10.1523/JNEUROSCI.3371-07.2007 CrossRefGoogle Scholar
  71. Wiers CE et al (2017) Striatal dopamine D2/D3 receptor availability varies across smoking status. Neuropsychopharmacology 42:2325–2332.  https://doi.org/10.1038/npp.2017.131 CrossRefGoogle Scholar
  72. World Health Organization (2004) ICD-10: international statistical classification of diseases and related health problems/World Health Organization. WHO, Geneva. https://nla.gov.au/nla.cat-vn3454953
  73. Wu Y, Carson RE (2002) Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab 22:1440–1452.  https://doi.org/10.1097/00004647-200212000-00004 CrossRefGoogle Scholar
  74. Yang H, Devous MD, Briggs RW, Spence JS, Xiao H, Kreyling N, Adinoff B (2013) Altered neural processing of threat in alcohol-dependent men alcohol. Clin Exp Res 37:2029–2038.  https://doi.org/10.1111/acer.12187 CrossRefGoogle Scholar
  75. Yang H et al (2015) Interaction between early life stress and alcohol dependence on neural stress reactivity. Addict Biol 20:523–533.  https://doi.org/10.1111/adb.12135 CrossRefGoogle Scholar
  76. Yaroslavsky I, Tejani-Butt SM (2010) Voluntary alcohol consumption alters stress-induced changes in dopamine-2 receptor binding in Wistar–Kyoto rat brain. Pharmacol Biochem Behav 94:471–476.  https://doi.org/10.1016/j.pbb.2009.10.010 CrossRefGoogle Scholar
  77. Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • M. Sebold
    • 1
    • 2
    Email author
  • G. Spitta
    • 1
  • T. Gleich
    • 1
  • T. Dembler-Stamm
    • 1
  • O. Butler
    • 3
  • K. Zacharias
    • 1
  • S. Aydin
    • 4
  • M. Garbusow
    • 1
  • M. Rapp
    • 2
  • F. Schubert
    • 4
  • R. Buchert
    • 5
  • J. Gallinat
    • 6
  • A. Heinz
    • 1
  1. 1.Department of Psychiatry and Psychotherapy, Charité Campus Mitte (CCM)Charité- Universitätsmedizin BerlinBerlinGermany
  2. 2.Department for Social and Preventive MedicineUniversity of PotsdamPotsdamGermany
  3. 3.Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
  4. 4.Physikalisch-Technische Bundesanstalt (PTB)Braunschweig, BerlinGermany
  5. 5.Department of Diagnostic and Interventional Radiology and Nuclear MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany
  6. 6.Department of Psychiatry and PsychotherapyUniversity Medical Center Hamburg-Eppendorf (UKE)HamburgGermany

Personalised recommendations