Journal of Neural Transmission

, Volume 126, Issue 1, pp 109–113 | Cite as

Application of pharmacogenetics in clinical practice: problems and solutions

  • Andrius BaskysEmail author
Psychiatry and Preclinical Psychiatric Studies - Review Article


This paper discusses difficulties of pharmacogenomic data integration into clinical practice. It emphasizes the need for developing simple and easy to use bioinformatics tools to help prescribers to rapidly access and use genetic data in clinical decision-making at the point of encounter.


Clinical informatics tools Medication side effect estimation Drug–drug interactions Drug–gene interactions 


  1. Aka I, Bernal CJ, Carroll R, Maxwell-Horn A, Oshikoya KA, Van Driest SL (2017) Clinical pharmacogenetics of cytochrome P450-associated drugs in children. J Personalized Med 7:E14Google Scholar
  2. Alving AS, Carson PE, Flanagan CL, Ickes CE (1956) Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124:484–485Google Scholar
  3. Baskys A (2017) Pharmacogenomic information for common psychotropic drugs. In: Procyshyn RM, Bezchlibnyk-Butler KZ, Jeffries JJ (eds) Clinical handbook of psychotropic drugs, 22nd edn. Hogrefe Publishing, Boston, pp 399–409Google Scholar
  4. Blagec K, Koopmann R, Crommentuijn-van Rhenen M, Holsappel I, van der Wouden CH, Konta L, Xu H, Steinberger D, Just E, Swen JJ, Guchelaar HJ, Samwald M (2018) Implementing pharmacogenomics decision support across seven European countries: the Ubiquitous Pharmacogenomics (U-PGx) project. J Am Med Inform Assoc. (Epub ahead of print) Google Scholar
  5. Brousseau DC, McCarver DG, Drendel AL, Divakaran K, Panepinto JA (2007) The effect of CYP2D6 polymorphisms on the response to pain treatment for pediatric sickle cell pain crisis. J Pediatr 150:623–626Google Scholar
  6. Cheung Y, Summerour RB, Cui X, Baskys A (2016) Testing for CYP polymorphisms is associated with a reduction in the frequency of changes in psychotropic prescriptions made by community psychiatrists. J Genom Med Pharmacogenomics 1:1–5Google Scholar
  7. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422Google Scholar
  8. Ferreri SP, Greco AJ, Michaels NM, O’Connor SK, Chater RW, Viera AJ, Faruki H, McLeod HL, Roederer MW (2014) Implementation of a pharmacogenomics service in a community pharmacy. J Am Pharm Assoc 54:172–180Google Scholar
  9. Gammal RS, Crews KR, Haidar CE, Hoffman JM, Baker DK, Barker PJ, Estepp JH, Pei D, Broeckel U, Wang W, Weiss MJ, Relling MV, Hankins J. (2016) Pharmacogenetics for safe codeine use in sickle cell disease. Pediatrics 138:e20153479Google Scholar
  10. He ZX, Chen XW, Zhou ZW, Zhou SF (2015) Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 47:470–519Google Scholar
  11. Hess GP, Fonseca E, Scott R, Fagerness J (2015) Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: current state and factors impacting acceptance by stakeholders. Genet Res (Camb) 97:e13Google Scholar
  12. Hinderer M, Boeker M, Wagner SA, Lablans M, Newe S, Hülsemann JL, Neumaier M, Binder H, Renz H, Acker T, Prokosch HU, Sedlmayr M (2017) Integrating clinical decision support systems for pharmacogenomic testing into clinical routine—a scoping review of designs of user-system interactions in recent system development. BMC Med Inform Decis Mak 17:81Google Scholar
  13. Ji Y, Skierka JM, Blommel JH, Moore BE, VanCuyk DL, Bruflat JK, Peterson LM, Veldhuizen TL, Fadra N, Peterson SE, Lagerstedt SA, Train LJ, Baudhuin LM, Klee EW, Ferber MJ5, Bielinski SJ, Caraballo PJ, Weinshilboum RM, Black JL (2016) Preemptive pharmacogenomic testing for precision medicine. A comprehensive analysis of five actionable pharmacogenomic genes using next-generation DNA sequencing and a customized CYP2D6 genotyping cascade. J Mol Diagn 18:438–445Google Scholar
  14. Katzung BG, Masters SB, Trevor AJ (2009) Basic and clinical pharmacology, 11th edn. McGraw-Hill Medical, New YorkGoogle Scholar
  15. Landsteiner K (1900) Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der LympheZentralbl. Bakteriol 27:357–362Google Scholar
  16. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205Google Scholar
  17. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL (1977) Polymorphic hydroxylation of Debrisoquine in man. Lancet 2:584–586Google Scholar
  18. Manikandan and Nagini (2018) Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets 19:38–54Google Scholar
  19. McGraw J, Waller D (2012) Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 8:371–382Google Scholar
  20. Moretti ME, Lato DF, Berger H, Koren G, Ito S, Ungar WJ (2018) A cost-effectiveness analysis of maternal CYP2D6 genetic testing to guide treatment for postpartum pain and avert infant adverse events. Pharmacogenomics J 18:391–397Google Scholar
  21. Mrazec DA (2010) Psychiatric Pharmacogenomics. Oxford University Press, OxfordGoogle Scholar
  22. Patel HN, Ursan ID, Zueger PM, Cavallari LH, Pickard AS (2014) Stakeholder views on pharmacogenomic testing. Pharmacotherapy 34:151–165Google Scholar
  23. Peterson JF, Field JR, Shi Y, Schildcrout JS, Denny JC1, McGregor TL, Van Driest SL, Pulley JM, Lubin IM, Laposata M, Roden DM, Clayton EW (2016) Attitudes of clinicians following large-scale pharmacogenomics implementation. Pharmacogenomics J 16:393–398Google Scholar
  24. Plumpton CO, Roberts D, Pirmohamed M, Hughes DA (2016) A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions. Pharmacoeconomics 34:771–793Google Scholar
  25. Polimanti R, Piacentini S, Manfellotto D, Fuciarelli M (2012) Human genetic variation of CYP450 superfamily: analysis of functional diversity in worldwide populations. Pharmacogenomics 16:1951–1960Google Scholar
  26. Preissner S, Kroll K, Dunkel M et al. (2012) SuperCYP: a comprehensive database on cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 2010:D237–D243Google Scholar
  27. Ren ZY, Xu XQ, Bao YP, He J, Shi L, Deng JH, Gao XJ, Tang HL, Wang YM, Lu L (2015) The impact of genetic variation on sensitivity to opioid analgesics in patients with postoperative pain: a systematic review and meta-analysis. Pain Phys 18:131–152Google Scholar
  28. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA (2013) Applications of CYP450 testing in the clinical setting. Mol Diagn Ther 17:165–184Google Scholar
  29. Snyder SR, Mitropoulou C, Patrinos GP, Williams MS (2014) Economic evaluation of pharmacogenomics: a value based approach to pragmatic decision making in the face of complexity. Public Health Genom 17:256–264Google Scholar
  30. Teh LK, Bertilsson L (2012) Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 27:55–67Google Scholar
  31. Whirl-Carrillo M, McDonagh EM, Hebert JM et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaUSA
  2. 2.Memory Disorders ClinicRiverside Psychiatric Medical GroupRiversideUSA
  3. 3.World Association of Genomic MedicineA CoruñaSpain

Personalised recommendations