Journal of Neural Transmission

, Volume 126, Issue 1, pp 47–63 | Cite as

Blood-based biomarkers predicting response to antidepressants

  • Yasmin Busch
  • Andreas MenkeEmail author
Psychiatry and Preclinical Psychiatric Studies - Review Article


Major depressive disorder is a common, serious and in some cases, life‐threatening condition and affects approximately 350 million people globally. Although there is effective treatment available for it, more than 50% of the patients fail to respond to the first antidepressant they receive. The selection of a distinct treatment is still exclusively based on clinical judgment without incorporating lab-derived objective measures. However, there is growing evidence of biomarkers that it helps to improve diagnostic processes and treatment algorithms. Here genetic markers and blood-based biomarkers of the monoamine pathways, inflammatory pathways and the hypothalamic–pituitary–adrenal (HPA) axis are reviewed. Promising findings arise from studies investigating inflammatory pathways and immune markers that may identify patients suitable for anti-inflammatory based treatment regimes. Next, an early normalization of a disturbed HPA axis or depleted neurotrophic factors may predict stable treatment response. Genetic markers within the serotonergic system may identify patients who are vulnerable because of stressful life events, but evidence for guiding treatment regimes still is inconsistent. Therefore, there is still a great need for studies investigating and validating biomarkers for the prediction of treatment response to facilitate the treatment selection and shorten the time to remission and thus provide personalized medicine in psychiatry.


Biomarkers Genetic variants Major depression Antidepressants 5-HTT HPA axis Inflammation Immune BDNF SNPs FKBP5 


  1. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63(7):642–649 (PubMed PMID: 17981266, Pubmed Central PMCID: PMC2352150, Epub 2007/11/06.eng) Google Scholar
  2. Anderson HD, Pace WD, Libby AM, West DR, Valuck RJ (2012) Rates of 5 common antidepressant side effects among new adult and adolescent cases of depression: a retrospective US claims study. Clin Ther 34(1):113–123 (PubMed PMID: 22177545, Epub 2011/12/20.eng) Google Scholar
  3. Appelhof BC, Huyser J, Verweij M, Brouwer JP, van Dyck R, Fliers E et al (2006) Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol Psychiatry 59(8):696–701 (PubMed PMID: 16368077, Epub 2005/12/22.eng) Google Scholar
  4. Arana GW, Baldessarini RJ, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch Gen Psychiatry 42(12):1193–1204 (PubMed PMID: 3000317, Epub 1985/12/01.eng) Google Scholar
  5. Arias B, Serretti A, Lorenzi C, Gasto C, Catalan R, Fananas L (2006) Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. J Affect Disord 90(2–3):251–256 (PubMed PMID: 16356553) Google Scholar
  6. Arias B, Fabbri C, Gressier F, Serretti A, Mitjans M, Gasto C et al (2013) TPH1, MAOA, serotonin receptor 2A and 2C genes in citalopram response: possible effect in melancholic and psychotic depression. Neuropsychobiology 67(1):41–47 (PubMed PMID: 23221997, Epub 2012/12/12.eng) Google Scholar
  7. Aschbacher K, Mills PJ, von Kanel R, Hong S, Mausbach BT, Roepke SK et al (2008) Effects of depressive and anxious symptoms on norepinephrine and platelet P-selectin responses to acute psychological stress among elderly caregivers. Brain Behav Immun 22(4):493–502 (PubMed PMID: 18054198, Pubmed Central PMCID: 2442159) Google Scholar
  8. Baffa A, Hohoff C, Baune BT, Muller-Tidow C, Tidow N, Freitag C et al (2010) Norepinephrine and serotonin transporter genes: impact on treatment response in depression. Neuropsychobiology 62(2):121–131 (PubMed PMID: 20588071) Google Scholar
  9. Bardeleben U, Holsboer F (1989) Cortisol response to a combined dexamethasone-human corticotrophin-releasing hormone challenge in patients with depression. J Neuroendocrinol 1(6):485–488 (PubMed PMID: 19210420, Epub 1989/12/01.eng) Google Scholar
  10. Barron E, Lara J, White M, Mathers JC (2015) Blood-borne biomarkers of mortality risk: systematic review of cohort studies. PloS One 10(6):e0127550 (PubMed PMID: 26039142, Pubmed Central PMCID: 4454670) Google Scholar
  11. Baune BT, Hohoff C, Roehrs T, Deckert J, Arolt V, Domschke K (2008) Serotonin receptor 1A-1019C/G variant: impact on antidepressant pharmacoresponse in melancholic depression? Neurosci Lett 436(2):111–115 (PubMed PMID: 18387740, Epub 2008/04/05.eng) Google Scholar
  12. Baune BT, Dannlowski U, Domschke K, Janssen DG, Jordan MA, Ohrmann P et al (2010) The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biol Psychiatry 67(6):543–549 (PubMed PMID: 20044070, Epub 2010/01/02.eng) Google Scholar
  13. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34(Suppl 1):S186–S195 (PubMed PMID: 19560279, Epub 2009/06/30.eng) Google Scholar
  14. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B et al (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36(12):1319–1325 (PubMed PMID: 15565110) Google Scholar
  15. Bleys D, Luyten P, Soenens B, Claes S (2018) Gene–environment interactions between stress and 5-HTTLPR in depression: a meta-analytic update. J Affect Disord 15(226):339–345 (PubMed PMID: 29031184) Google Scholar
  16. Bondy B, Kuznik J, Baghai T, Schule C, Zwanzger P, Minov C et al (2000) Lack of association of serotonin-2A receptor gene polymorphism (T102C) with suicidal ideation and suicide. Am J Med Genet 96(6):831–835 (PubMed PMID: 11121191) Google Scholar
  17. Bortolozzi A, Castane A, Semakova J, Santana N, Alvarado G, Cortes R et al (2012) Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects. Mol Psychiatry 17(6):612–623 (PubMed PMID: 21808255, Epub 2011/08/03.eng) Google Scholar
  18. Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D et al (2011) Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 16(5):516–532 (PubMed PMID: 20351714, Epub 2010/03/31.eng) Google Scholar
  19. Bozina N, Peles AM, Sagud M, Bilusic H, Jakovljevic M (2008) Association study of paroxetine therapeutic response with SERT gene polymorphisms in patients with major depressive disorder. World J Biol Psychiatry 9(3):190–197 (PubMed PMID: 17853254, Epub 2007/09/14.eng) Google Scholar
  20. Breitenstein B, Bruckl TM, Ising M, Muller-Myhsok B, Holsboer F, Czamara D (2015) ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 168B(4):274–283 (PubMed PMID: 25847751) Google Scholar
  21. Bukh JD, Bock C, Vinberg M, Werge T, Gether U, Vedel Kessing L (2009) Interaction between genetic polymorphisms and stressful life events in first episode depression. J Affect Disord 119(1–3):107–115 (PubMed PMID: 19339052, Epub 2009/04/03.eng) Google Scholar
  22. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430 (PubMed PMID: 25565964, Pubmed Central PMCID: PMC4273623, Epub 2015/01/08. Eng) Google Scholar
  23. Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF et al (1981) A specific laboratory test for the diagnosis of melancholia. Standardization, validation, and clinical utility. Arch Gen Psychiatry 38(1):15–22 (PubMed PMID: 7458567, Epub 1981/01/01.eng) Google Scholar
  24. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389 (PubMed PMID: 12869766) Google Scholar
  25. Cattaneo A, Pariante CM (2018) Integrating ‘Omics’ approaches to prioritize new pathogenetic mechanisms for mental disorders. Neuropsychopharmacology 43(1):227–228 (PubMed PMID: 29192656, Pubmed Central PMCID: PMC5719117) Google Scholar
  26. Cattaneo A, Sesta A, Calabrese F, Nielsen G, Riva MA, Gennarelli M (2010a) The expression of VGF is reduced in leukocytes of depressed patients and it is restored by effective antidepressant treatment. Neuropsychopharmacology 35(7):1423–1428 (PubMed PMID: 20164831, Pubmed Central PMCID: PMC3055467, Epub 2010/02/19.eng) Google Scholar
  27. Cattaneo A, Bocchio-Chiavetto L, Zanardini R, Milanesi E, Placentino A, Gennarelli M (2010b) Reduced peripheral brain-derived neurotrophic factor mRNA levels are normalized by antidepressant treatment. Int J Neuropsychopharmacol 13(1):103–108 (PubMed PMID: 19835669, Epub 2009/10/20.eng) Google Scholar
  28. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ et al (2013) Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology 38(3):377–385 (PubMed PMID: 22990943, Epub 2012/09/20.eng) Google Scholar
  29. Colle R, Gressier F, Verstuyft C, Deflesselle E, Lepine JP, Ferreri F et al (2015) Brain-derived neurotrophic factor Val66Met polymorphism and 6-month antidepressant remission in depressed Caucasian patients. J Affect Disord 175:233–240 (PubMed PMID: 25658497, Epub 2015/02/07.eng) Google Scholar
  30. Coryell W, Schlesser M (2001) The dexamethasone suppression test and suicide prediction. Am J Psychiatry 158(5):748–753 (PubMed PMID: 11329397, Epub 2001/05/01.eng) Google Scholar
  31. Crissman AM, Makhay MM, O’Donnell JM (2001) Discriminative stimulus effects of centrally administered isoproterenol in rats: mediation by beta-1 adrenergic receptors. Psychopharmacology 154(1):70–75 (PubMed PMID: 11292008, Epub 2001/04/09.eng) Google Scholar
  32. Crowley JJ, Lipsky RH, Lucki I, Berrettini WH (2008) Variation in the genes encoding vesicular monoamine transporter 2 and beta-1 adrenergic receptor and antidepressant treatment outcome. Psychiatr Genet 18(5):248–251 (PubMed PMID: 18797399, Epub 2008/09/18.eng) Google Scholar
  33. Culverhouse RC, Saccone NL, Horton AC, Ma Y, Anstey KJ, Banaschewski T et al (2018) Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Mol Psychiatry 23(1):133–142 (PubMed PMID: 28373689, Pubmed Central PMCID: PMC5628077) Google Scholar
  34. Cusin C, Serretti A, Zanardi R, Lattuada E, Rossini D, Lilli R et al (2002) Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int J Neuropsychopharmacol 5(1):27–35 (PubMed PMID: 12057029) Google Scholar
  35. Dantzer R, O’Connor JC, Lawson MA, Kelley KW (2011) Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 36(3):426–436 (PubMed PMID: 21041030, Pubmed Central PMCID: PMC3053088, Epub 2010/11/03.eng) Google Scholar
  36. de Klerk OL, Nolte IM, Bet PM, Bosker FJ, Snieder H, den Boer JA et al (2013) ABCB1 gene variants influence tolerance to selective serotonin reuptake inhibitors in a large sample of Dutch cases with major depressive disorder. Pharmacogenom J 13(4):349–353 (PubMed PMID: 22641028, Epub 2012/05/30.eng) Google Scholar
  37. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475 (PubMed PMID: 15891777) Google Scholar
  38. Domschke K, Hohoff C, Mortensen LS, Roehrs T, Deckert J, Arolt V et al (2008) Monoamine oxidase A variant influences antidepressant treatment response in female patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 32(1):224–228 (PubMed PMID: 17884271, Epub 2007/09/22.eng) Google Scholar
  39. Dong C, Wong ML, Licinio J (2009) Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican–Americans. Mol Psychiatry 14(12):1105–1118 (PubMed PMID: 19844206, Pubmed Central PMCID: PMC2834349, Epub 2009/10/22.eng) Google Scholar
  40. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457 (PubMed PMID: 20015486) Google Scholar
  41. Dreimuller N, Tadic A, Dragicevic A, Boland K, Bondy B, Lieb K et al (2012) The serotonin transporter promoter polymorphism (5-HTTLPR) affects the relation between antidepressant serum concentrations and effectiveness in major depression. Pharmacopsychiatry 45(3):108–113 (PubMed PMID: 22086748, Epub 2011/11/17.eng) Google Scholar
  42. Eichelbaum M, Fromm MF, Schwab M (2004) Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther Drug Monit 26(2):180–185 (PubMed PMID: 15228162, Epub 2004/07/02.eng) Google Scholar
  43. Eller T, Vasar V, Shlik J, Maron E (2008) Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32(2):445–450 (PubMed PMID: 17976882) Google Scholar
  44. Fabbri C, Di Girolamo G, Serretti A (2013) Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet Part B Neuropsychiatr Genet 162B(6):487–520 (PubMed PMID: 23852853, Epub 2013/07/16.eng) Google Scholar
  45. Fernandes BS, Berk M, Turck CW, Steiner J, Goncalves CA (2014) Decreased peripheral brain-derived neurotrophic factor levels are a biomarker of disease activity in major psychiatric disorders: a comparative meta-analysis. Mol Psychiatry 19(7):750–751 (PubMed PMID: 24342989) Google Scholar
  46. Fiskerstrand CE, Lovejoy EA, Quinn JP (1999) An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells. FEBS Lett 458(2):171–174 (PubMed PMID: 10481059, Epub 1999/09/11.eng) Google Scholar
  47. Fowler JS, Alia-Klein N, Kriplani A, Logan J, Williams B, Zhu W et al (2007) Evidence that brain MAO A activity does not correspond to MAO A genotype in healthy male subjects. Biol Psychiatry 62(4):355–358 (PubMed PMID: 17141746, Epub 2006/12/05.eng) Google Scholar
  48. Galfalvy H, Currier D, Oquendo MA, Sullivan G, Huang YY, John Mann J (2009) Lower CSF MHPG predicts short-term risk for suicide attempt. Int J Neuropsychopharmacol 12(10):1327–1335 (PubMed PMID: 19573266, Pubmed Central PMCID: 3773850) Google Scholar
  49. Garriock HA, Delgado P, Kling MA, Carpenter LL, Burke M, Burke WJ et al (2006) Number of risk genotypes is a risk factor for major depressive disorder: a case control study. Behav Brain Funct 2:24 (PubMed PMID: 16822313, Pubmed Central PMCID: PMC1526442, Epub 2006/07/11.eng) Google Scholar
  50. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD et al (2010) A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry 67(2):133–138 (PubMed PMID: 19846067, Epub 2009/10/23.eng) Google Scholar
  51. Geracitano R, Federici M, Bernardi G, Mercuri NB (2006) On the effects of psychostimulants, antidepressants, and the antiparkinsonian drug levodopa on dopamine neurons. Ann N Y Acad Sci 1074:320–329 (PubMed PMID: 17105928, Epub 2006/11/16.eng) Google Scholar
  52. Gillman PK (2007) Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 151(6):737–748 (PubMed PMID: 17471183, Pubmed Central PMCID: PMC2014120, Epub 2007/05/02.eng) Google Scholar
  53. Greden JF, Gardner R, King D, Grunhaus L, Carroll BJ, Kronfol Z (1983) Dexamethasone suppression tests in antidepressant treatment of melancholia. The process of normalization and test–retest reproducibility. Arch Gen Psychiatry 40(5):493–500 (PubMed PMID: 6340634, Epub 1983/05/01.eng) Google Scholar
  54. Hahn MK, Mazei-Robison MS, Blakely RD (2005) Single nucleotide polymorphisms in the human norepinephrine transporter gene affect expression, trafficking, antidepressant interaction, and protein kinase C regulation. Mol Pharmacol 68(2):457–466 (PubMed PMID: 15894713, Epub 2005/05/17.eng) Google Scholar
  55. Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36(12):2452–2459 (PubMed PMID: 21796103, Pubmed Central PMCID: 3194072) Google Scholar
  56. Harley J, Luty S, Carter J, Mulder R, Joyce P (2010) Elevated C-reactive protein in depression: a predictor of good long-term outcome with antidepressants and poor outcome with psychotherapy. J Psychopharmacol 24(4):625–626 (PubMed PMID: 19282426) Google Scholar
  57. Heinrichs SC, Koob GF (2004) Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 311(2):427–440 (PubMed PMID: 15297468) Google Scholar
  58. Hennings JM, Uhr M, Klengel T, Weber P, Putz B, Touma C et al (2015) RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. Transl Psychiatry 5:e538 (PubMed PMID: 25826113, Pubmed Central PMCID: 4429173) Google Scholar
  59. Heuser I, Yassouridis A, Holsboer F (1994) The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 28(4):341–356 (PubMed PMID: 7877114) Google Scholar
  60. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23(5):477–501 (PubMed PMID: 11027914) Google Scholar
  61. Holsboer F, Ising M (2008) Central CRH system in depression and anxiety–evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 583(2–3):350–357 (PubMed PMID: 18272149, Epub 2008/02/15.eng) Google Scholar
  62. Hong CJ, Chen TJ, Yu YW, Tsai SJ (2006) Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenom J 6(1):27–33 (PubMed PMID: 16302021) Google Scholar
  63. Hranilovic D, Stefulj J, Schwab S, Borrmann-Hassenbach M, Albus M, Jernej B et al (2004) Serotonin transporter promoter and intron 2 polymorphisms: relationship between allelic variants and gene expression. Biol Psychiatry 55(11):1090–1094 (PubMed PMID: 15158428, Epub 2004/05/26.eng) Google Scholar
  64. Hu XZ, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD et al (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive–compulsive disorder. Am J Hum Genet 78(5):815–826 (PubMed PMID: 16642437) Google Scholar
  65. Hu XZ, Rush AJ, Charney D, Wilson AF, Sorant AJ, Papanicolaou GJ et al (2007) Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatry 64(7):783–792 (PubMed PMID: 17606812) Google Scholar
  66. Hwu HG, Chen TY, Yang YY (1985) The clinical diagnostic value of dexamethasone suppression test in depressive illness. Ann Acad Med Singap 14(1):104–109 (PubMed PMID: 4004115, Epub 1985/01/01.eng) Google Scholar
  67. Ide S, Kakeda S, Watanabe K, Yoshimura R, Abe O, Hayashi K et al (2015) Relationship between a BDNF gene polymorphism and the brain volume in treatment-naive patients with major depressive disorder: a VBM analysis of brain MRI. Psychiatry Res 233(2):120–124 (PubMed PMID: 26078197, Epub 2015/06/17. eng) Google Scholar
  68. Illi A, Setala-Soikkeli E, Viikki M, Poutanen O, Huhtala H, Mononen N et al (2009) 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport 20(12):1125–1128 (PubMed PMID: 19590397, Epub 2009/07/11.eng) Google Scholar
  69. Ising M, Horstmann S, Kloiber S, Lucae S, Binder EB, Kern N et al (2007) Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression—a potential biomarker? Biol Psychiatry 62(1):47–54 (PubMed PMID: 17123470, Epub 2006/11/25.eng) Google Scholar
  70. Ising M, Lucae S, Binder EB, Bettecken T, Uhr M, Ripke S et al (2009) A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry 66(9):966–975 (PubMed PMID: 19736353, Epub 2009/09/09.eng) Google Scholar
  71. Janssen DG, Caniato RN, Verster JC, Baune BT (2010) A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol 25(3):201–215 (PubMed PMID: 20373471, Epub 2010/04/08.eng) Google Scholar
  72. Jetten AM (2004) Recent advances in the mechanisms of action and physiological functions of the retinoid-related orphan receptors (RORs). Curr Drug Targets Inflamm Allergy 3(4):395–412 (PubMed PMID: 15584888) Google Scholar
  73. Ji Y, Biernacka J, Snyder K, Drews M, Pelleymounter LL, Colby C et al (2012) Catechol O-methyltransferase pharmacogenomics and selective serotonin reuptake inhibitor response. Pharmacogenom J 12(1):78–85 (PubMed PMID: 20877297, Pubmed Central PMCID: PMC3113454, Epub 2010/09/30.eng) Google Scholar
  74. Kaestner F, Hettich M, Peters M, Sibrowski W, Hetzel G, Ponath G et al (2005) Different activation patterns of proinflammatory cytokines in melancholic and non-melancholic major depression are associated with HPA axis activity. J Affect Disord 87(2–3):305–311 (PubMed PMID: 15951024, Epub 2005/06/14.eng) Google Scholar
  75. Kang RH, Choi MJ, Paik JW, Hahn SW, Lee MS (2007) Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression. Int J Psychiatry Med 37(3):315–329 (PubMed PMID: 18314859, Epub 2008/03/05.eng) Google Scholar
  76. Kapczinski F, Dal-Pizzol F, Teixeira AL, Magalhaes PV, Kauer-Sant’Anna M, Klamt F et al (2010) A systemic toxicity index developed to assess peripheral changes in mood episodes. Mol Psychiatry 15(8):784–786 (PubMed PMID: 20351717) Google Scholar
  77. Kato M, Serretti A (2010) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15(5):473–500 (PubMed PMID: 18982004, Epub 2008/11/05.eng) Google Scholar
  78. Kato M, Fukuda T, Wakeno M, Fukuda K, Okugawa G, Ikenaga Y et al (2006) Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology 53(4):186–195 (PubMed PMID: 16874005) Google Scholar
  79. Kato M, Wakeno M, Okugawa G, Fukuda T, Azuma J, Kinoshita T et al (2007) No association of TPH1 218A/C polymorphism with treatment response and intolerance to SSRIs in Japanese patients with major depression. Neuropsychobiology 56(4):167–171 (PubMed PMID: 18332644, Epub 2008/03/12.eng) Google Scholar
  80. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y et al (2008) ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32(2):398–404 (PubMed PMID: 17913323, Epub 2007/10/05.eng) Google Scholar
  81. Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S et al (2009) Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet Part B Neuropsychiatr Genet 150B(1):115–123 (PubMed PMID: 18484082, Epub 2008/05/17.eng) Google Scholar
  82. Katz ER, Stowe ZN, Newport DJ, Kelley ME, Pace TW, Cubells JF et al (2012) Regulation of mRNA expression encoding chaperone and co-chaperone proteins of the glucocorticoid receptor in peripheral blood: association with depressive symptoms during pregnancy. Psychol Med 42(5):943–956 (PubMed PMID: 21995950, Epub 2011/10/15.eng) Google Scholar
  83. Kautzky A, Baldinger P, Souery D, Montgomery S, Mendlewicz J, Zohar J et al (2015) The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression. Eur Neuropsychopharmacol 25(4):441–453 (PubMed PMID: 25769916, Epub 2015/03/15.eng) Google Scholar
  84. Keers R, Aitchison KJ (2010) Gender differences in antidepressant drug response. Int Rev Psychiatry (Abingdon, England) 22(5):485–500 (PubMed PMID: 21047161, Epub 2010/11/05.eng) Google Scholar
  85. Kendler KS, Prescott CA (1999) A population-based twin study of lifetime major depression in men and women. Arch Gen Psychiatry 56(1):39–44 (PubMed PMID: 9892254) Google Scholar
  86. Kim DK, Lim SW, Lee S, Sohn SE, Kim S, Hahn CG et al (2000) Serotonin transporter gene polymorphism and antidepressant response. NeuroReport 11(1):215–219 (PubMed PMID: 10683861) Google Scholar
  87. Kim H, Lim SW, Kim S, Kim JW, Chang YH, Carroll BJ et al (2006) Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. JAMA 296(13):1609–1618 (PubMed PMID: 17018806) Google Scholar
  88. Kirchheiner J, Nickchen K, Sasse J, Bauer M, Roots I, Brockmoller J (2007) A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenom J 7(1):48–55 (PubMed PMID: 16702979) Google Scholar
  89. Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O et al (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71(12):1381–1391 (PubMed PMID: 25322082) Google Scholar
  90. Koob GF, Zorrilla EP (2012) Update on corticotropin-releasing factor pharmacotherapy for psychiatric disorders: a revisionist view. Neuropsychopharmacology 37(1):308–309 (PubMed PMID: 22157874, Pubmed Central PMCID: PMC3238086, Epub 2011/12/14.eng) Google Scholar
  91. Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P et al (2016) Effects of IL1B single nucleotide polymorphisms on depressive and anxiety symptoms are determined by severity and type of life stress. Brain Behav Immun (PubMed PMID: 26891860, Epub 2016/02/20.eng) Google Scholar
  92. Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P et al (2016b) Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes. J Neural Transm (Vienna, Austria: 1996) 123(5):541–548 (PubMed PMID: 26821321, Pubmed Central PMCID: PMC4846685, Epub 2016/01/29.eng) Google Scholar
  93. Kraft JB, Slager SL, McGrath PJ, Hamilton SP (2005) Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatry 58(5):374–381 (PubMed PMID: 15993855) Google Scholar
  94. Kraft JB, Peters EJ, Slager SL, Jenkins GD, Reinalda MS, McGrath PJ et al (2007) Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatry 61(6):734–742 (PubMed PMID: 17123473) Google Scholar
  95. Krishnadas R, Cavanagh J (2012) Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry 83(5):495–502 (PubMed PMID: 22423117) Google Scholar
  96. Kunugi H, Hattori M, Kato T, Tatsumi M, Sakai T, Sasaki T et al (1997) Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Mol Psychiatry 2(6):457–462 (PubMed PMID: 9399688) Google Scholar
  97. Laika B, Leucht S, Steimer W (2006) ABCB1 (P-glycoprotein/MDR1) gene G2677T/a sequence variation (polymorphism): lack of association with side effects and therapeutic response in depressed inpatients treated with amitriptyline. Clin Chem 52(5):893–895 (PubMed PMID: 16638956) Google Scholar
  98. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22(4):370–379 (PubMed PMID: 10700656) Google Scholar
  99. Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ et al (2008) The FKBP5-gene in depression and treatment response—an association study in the sequenced treatment alternatives to relieve depression (STAR*D) cohort. Biol Psychiatry 63(12):1103–1110 (PubMed PMID: 18191112, Pubmed Central PMCID: PMC2587308, Epub 2008/01/15. eng) Google Scholar
  100. Lemonde S, Du L, Bakish D, Hrdina P, Albert PR (2004) Association of the C(−1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 7(4):501–506 (PubMed PMID: 15447813) Google Scholar
  101. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274(5292):1527–1531 (PubMed PMID: 8929413) Google Scholar
  102. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP et al (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA 110(24):9950–9955 (PubMed PMID: 23671070, Pubmed Central PMCID: 3683716) Google Scholar
  103. Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R et al (2004) Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican–Americans. Mol Psychiatry 9(12):1075–1082 (PubMed PMID: 15365580) Google Scholar
  104. Lifschytz T, Gur E, Lerer B, Newman ME (2004) Effects of triiodothyronine and fluoxetine on 5-HT1A and 5-HT1B autoreceptor activity in rat brain: regional differences. J Neurosci Methods 140(1–2):133–139 (PubMed PMID: 15589343, Epub 2004/12/14.eng) Google Scholar
  105. Lin JY, Jiang MY, Kan ZM, Chu Y (2014) Influence of 5-HTR2A genetic polymorphisms on the efficacy of antidepressants in the treatment of major depressive disorder: a meta-analysis. J Affect Disord 168:430–438 (PubMed PMID: 25108775) Google Scholar
  106. Lisiecka DM, O’Hanlon E, Fagan AJ, Carballedo A, Morris D, Suckling J et al (2015) BDNF Val66Met polymorphism in patterns of neural activation in individuals with MDD and healthy controls. J Affect Disord 184:239–244 (PubMed PMID: 26117067, Epub 2015/06/29.eng) Google Scholar
  107. Liu QR, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ et al (2005) Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson’s disease. Am J Med Genet Part B Neuropsychiatr Genet 134B(1):93–103 (PubMed PMID: 15666411, Epub 2005/01/25.eng) Google Scholar
  108. Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139(3):230–239 (PubMed PMID: 21872339) Google Scholar
  109. Lopizzo N, Tosato S, Begni V, Tomassi S, Cattane N, Barcella M et al (2017) Transcriptomic analyses and leukocyte telomere length measurement in subjects exposed to severe recent stressful life events. Transl Psychiatry 7(2):e1042 (PubMed PMID: 28221367, Pubmed Central PMCID: PMC5438034) Google Scholar
  110. MacKenzie A, Quinn J (1999) A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proc Natl Acad Sci USA 96(26):15251–15255 (PubMed PMID: 10611371, Pubmed Central PMCID: PMC24806, Epub 1999/12/28.eng) Google Scholar
  111. Mandelli L, Mazza M, Martinotti G, Tavian D, Colombo E, Missaglia S et al (2010) Further evidence supporting the influence of brain-derived neurotrophic factor on the outcome of bipolar depression: independent effect of brain-derived neurotrophic factor and harm avoidance. J Psychopharmacol (Oxford, England) 24(12):1747–1754 (PubMed PMID: 20142305, Epub 2010/02/10. eng) Google Scholar
  112. Mannisto PT, Kaakkola S (1999) Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51(4):593–628 (PubMed PMID: 10581325, Epub 1999/12/03.eng) Google Scholar
  113. Maron E, Tammiste A, Kallassalu K, Eller T, Vasar V, Nutt DJ et al (2009) Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur Neuropsychopharmacol 19(6):451–456 (PubMed PMID: 19272758, Epub 2009/03/11.eng) Google Scholar
  114. Matsubara T, Funato H, Kobayashi A, Nobumoto M, Watanabe Y (2006) Reduced glucocorticoid receptor alpha expression in mood disorder patients and first-degree relatives. Biol Psychiatry 59(8):689–695 (PubMed PMID: 16458268, Epub 2006/02/07.eng) Google Scholar
  115. Menke A, Arloth J, Putz B, Weber P, Klengel T, Mehta D et al (2012) Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology 37(6):1455–1464 (PubMed PMID: 22237309, Epub 2012/01/13.eng) Google Scholar
  116. Menke A, Klengel T, Rubel J, Bruckl T, Pfister H, Lucae S et al (2013) Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes Brain Behav 12(3):289–296 (PubMed PMID: 23406438, Epub 2013/02/15.eng) Google Scholar
  117. Menke A, Arloth J, Gerber M, Rex-Haffner M, Uhr M, Holsboer F et al (2014) Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion. Psychoneuroendocrinology 44:35–46 (PubMed PMID: 24767618, Epub 2014/04/29.eng) Google Scholar
  118. Menke A, Arloth J, Best J, Namendorf C, Gerlach T, Czamara D et al (2016) Time-dependent effects of dexamethasone plasma concentrations on glucocorticoid receptor challenge tests. Psychoneuroendocrinology 69:161–171 (PubMed PMID: 27107207) Google Scholar
  119. Meyer JH, Kapur S, Eisfeld B, Brown GM, Houle S, DaSilva J et al (2001) The effect of paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging study. Am J Psychiatry 158(1):78–85 (PubMed PMID: 11136637, Epub 2001/01/04.eng) Google Scholar
  120. Min W, Li T, Ma X, Li Z, Yu T, Gao D et al (2009) Monoamine transporter gene polymorphisms affect susceptibility to depression and predict antidepressant response. Psychopharmacology 205(3):409–417 (PubMed PMID: 19468717, Epub 2009/05/27.eng) Google Scholar
  121. Murphy DL, Lerner A, Rudnick G, Lesch KP (2004a) Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 4(2):109–123 (PubMed PMID: 15087484, Epub 2004/04/17.eng) Google Scholar
  122. Murphy GM Jr, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF (2004b) Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry 61(11):1163–1169 (PubMed PMID: 15520364) Google Scholar
  123. Murphy GM Jr, Sarginson JE, Ryan HS, O’Hara R, Schatzberg AF, Lazzeroni LC (2013) BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenet Genom 23(6):301–313 (PubMed PMID: 23619509, Epub 2013/04/27. eng) Google Scholar
  124. Myers RL, Airey DC, Manier DH, Shelton RC, Sanders-Bush E (2007) Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression. Biol Psychiatry 61(2):167–173 (PubMed PMID: 16697352, Epub 2006/05/16.eng) Google Scholar
  125. Nakamura K, Hasegawa H (2007) Developmental role of tryptophan hydroxylase in the nervous system. Mol Neurobiol 35(1):45–54 (PubMed PMID: 17519505, Epub 2007/05/24.eng) Google Scholar
  126. Nielsen DA, Jenkins GL, Stefanisko KM, Jefferson KK, Goldman D (1997) Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Brain Res Mol Brain Res 45(1):145–148 (PubMed PMID: 9105682, Epub 1997/04/01.eng) Google Scholar
  127. Niitsu T, Fabbri C, Bentini F, Serretti A (2013) Pharmacogenetics in major depression: a comprehensive meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 1(45):183–194 (PubMed PMID: 23733030) Google Scholar
  128. Nikkheslat N, Zunszain PA, Horowitz MA, Barbosa IG, Parker JA, Myint AM et al (2015) Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain Behav Immun 48:8–18 (PubMed PMID: 25683698) Google Scholar
  129. Notaras M, Hill R, van den Buuse M (2015) The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 20(8):916–930 (PubMed PMID: 25824305, Epub 2015/04/01. eng) Google Scholar
  130. O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41(3–4):326–331 (PubMed PMID: 16870211) Google Scholar
  131. Ogilvie AD, Battersby S, Bubb VJ, Fink G, Harmar AJ, Goodwim GM et al (1996) Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet (London, England) 347(9003):731–733 (PubMed PMID: 8602004, Epub 1996/03/16.eng) Google Scholar
  132. Pajer K, Andrus BM, Gardner W, Lourie A, Strange B, Campo J et al (2012) Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression. Transl Psychiatry 2:e101 (PubMed PMID: 22832901, Epub 2012/07/27.eng) Google Scholar
  133. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37(12):1553–1561 (PubMed PMID: 9886678, Epub 1999/01/14.eng) Google Scholar
  134. Pandey DK, Mahesh R, Kumar AA, Rao VS, Arjun M, Rajkumar R (2010a) A novel 5-HT(2A) receptor antagonist exhibits antidepressant-like effects in a battery of rodent behavioural assays: approaching early-onset antidepressants. Pharmacol Biochem Behav 94(3):363–373 (PubMed PMID: 19800913, Epub 2009/10/06.eng) Google Scholar
  135. Pandey GN, Dwivedi Y, Rizavi HS, Ren X, Zhang H, Pavuluri MN (2010b) Brain-derived neurotrophic factor gene and protein expression in pediatric and adult depressed subjects. Prog Neuropsychopharmacol Biol Psychiatry 34(4):645–651 (PubMed PMID: 20227453, Epub 2010/03/17.eng) Google Scholar
  136. Papakostas GI, Shelton RC, Kinrys G, Henry ME, Bakow BR, Lipkin SH et al (2013) Assessment of a multi-assay, serum-based biological diagnostic test for major depressive disorder: a pilot and replication study. Mol Psychiatry 18(3):332–339 (PubMed PMID: 22158016) Google Scholar
  137. Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L (2007) Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 104(1–3):83–90 (PubMed PMID: 17467808, Epub 2007/05/01.eng) Google Scholar
  138. Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49(5):391–404 (PubMed PMID: 11274650) Google Scholar
  139. Parsey RV, Olvet DM, Oquendo MA, Huang YY, Ogden RT, Mann JJ (2006) Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a naturalistic study. Neuropsychopharmacology 31(8):1745–1749 (PubMed PMID: 16395308, Epub 2006/01/06.eng) Google Scholar
  140. Perlis RH, Mischoulon D, Smoller JW, Wan YJ, Lamon-Fava S, Lin KM et al (2003) Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol Psychiatry 54(9):879–883 (PubMed PMID: 14573314) Google Scholar
  141. Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP (2010) Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol Psychiatry 67(11):1110–1113 (PubMed PMID: 20110084, Epub 2010/01/30.eng) Google Scholar
  142. Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP (2004) Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 9(9):879–889 (PubMed PMID: 15052272) Google Scholar
  143. Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ et al (2008) Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PloS One 3(4):e1872 (PubMed PMID: 18382661, Pubmed Central PMCID: PMC2268970, Epub 2008/04/03.eng) Google Scholar
  144. Pillai A, Kale A, Joshi S, Naphade N, Raju MS, Nasrallah H et al (2010) Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: correlation with plasma BDNF and psychopathology. Int J Neuropsychopharmacol 13(4):535–539 (PubMed PMID: 19941699) Google Scholar
  145. Porcelli S, Drago A, Fabbri C, Gibiino S, Calati R, Serretti A (2011) Pharmacogenetics of antidepressant response. J Psychiatry Neurosci 36(2):87–113 (PubMed PMID: 21172166, Pubmed Central PMCID: PMC3044192, Epub 2010/12/22.eng) Google Scholar
  146. Porcelli S, Fabbri C, Serretti A (2012) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol 22(4):239–258 (PubMed PMID: 22137564) Google Scholar
  147. Powell TR, Schalkwyk LC, Heffernan AL, Breen G, Lawrence T, Price T et al (2013) Tumor necrosis factor and its targets in the inflammatory cytokine pathway are identified as putative transcriptomic biomarkers for escitalopram response. Eur Neuropsychopharmacol 23(9):1105–1114 (PubMed PMID: 23142150, Epub 2012/11/13.eng) Google Scholar
  148. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90(3):397–406 (PubMed PMID: 17629449, Pubmed Central PMCID: PMC2568880, Epub 2007/07/17.eng) Google Scholar
  149. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF et al (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41 (PubMed PMID: 22945416, Pubmed Central PMCID: 4015348) Google Scholar
  150. Ray A, Tennakoon L, Keller J, Sarginson JE, Ryan HS, Murphy GM et al (2015) ABCB1 (MDR1) predicts remission on P-gp substrates in chronic depression. Pharmacogenom J 15(4):332–339 (PubMed PMID: 25487678, Epub 2014/12/10.eng) Google Scholar
  151. Redei EE, Andrus BM, Kwasny MJ, Seok J, Cai X, Ho J et al (2014) Blood transcriptomic biomarkers in adult primary care patients with major depressive disorder undergoing cognitive behavioral therapy. Transl Psychiatry 4:e442 (PubMed PMID: 25226551, Pubmed Central PMCID: 4198533) Google Scholar
  152. Ruhe HG, Ooteman W, Booij J, Michel MC, Moeton M, Baas F et al (2009) Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder. Pharmacogenet Genom 19(1):67–76 (PubMed PMID: 18987562, Epub 2008/11/07.eng) Google Scholar
  153. Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103(3):273–279 (PubMed PMID: 9799080, Epub 1998/11/03.eng) Google Scholar
  154. Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BD, Schatzberg AF, Murphy GM Jr (2010) ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet Genom 20(8):467–475 (PubMed PMID: 20555295, Epub 2010/06/18.eng) Google Scholar
  155. Sartorius N (2001) The economic and social burden of depression. J Clin Psychiatry 62(Suppl 15):8–11 (PubMed PMID: 11444765, Epub 2001/07/11.eng) Google Scholar
  156. Schatzberg AF, DeBattista C, Lazzeroni LC, Etkin A, Murphy GM Jr, Williams LM (2015) ABCB1 genetic effects on antidepressant outcomes: a report from the iSPOT-D trial. Am J Psychiatry 172(8):751–759 (PubMed PMID: 25815420, Epub 2015/03/31.eng) Google Scholar
  157. Serretti A, Artioli P (2004) The pharmacogenomics of selective serotonin reuptake inhibitors. Pharmacogenom J 4(4):233–244 (PubMed PMID: 15111987, Epub 2004/04/28.eng) Google Scholar
  158. Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E (2001) Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol 11(5):375–380 (PubMed PMID: 11597824) Google Scholar
  159. Serretti A, Artioli P, Lorenzi C, Pirovano A, Tubazio V, Zanardi R (2004) The C(−1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int J Neuropsychopharmacol 7(4):453–460 (PubMed PMID: 15458611) Google Scholar
  160. Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217 (PubMed PMID: 10202537, Pubmed Central PMCID: PMC2844879, Epub 1999/04/15.eng) Google Scholar
  161. Shiroma PR, Drews MS, Geske JR, Mrazek DA (2014) SLC6A4 polymorphisms and age of onset in late-life depression on treatment outcomes with citalopram: a sequenced treatment alternatives to relieve depression (STAR*D) report. Am J Geriatr Psychiatry 22(11):1140–1148 (PubMed PMID: 23973251, Pubmed Central PMCID: PMC4358736, Epub 2013/08/27.eng) Google Scholar
  162. Simon NM, McNamara K, Chow CW, Maser RS, Papakostas GI, Pollack MH et al (2008) A detailed examination of cytokine abnormalities in major depressive disorder. Eur Neuropsychopharmacol 18(3):230–233 (PubMed PMID: 17681762, Pubmed Central PMCID: PMC2267745, Epub 2007/08/08.eng) Google Scholar
  163. Smith AJ, Sketris I, Cooke C, Gardner D, Kisely S, Tett SE (2008) A comparison of antidepressant use in Nova Scotia, Canada and Australia. Pharmacoepidemiol Drug Saf 17(7):697–706 (PubMed PMID: 18181227, Epub 2008/01/09.eng) Google Scholar
  164. Smits K, Smits L, Peeters F, Schouten J, Janssen R, Smeets H et al (2007) Serotonin transporter polymorphisms and the occurrence of adverse events during treatment with selective serotonin reuptake inhibitors. Int Clin Psychopharmacol 22(3):137–143 (PubMed PMID: 17414739, Epub 2007/04/07.eng) Google Scholar
  165. Spronk D, Arns M, Barnett KJ, Cooper NJ, Gordon E (2011) An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study. J Affect Disord 128(1–2):41–48 (PubMed PMID: 20619899, Epub 2010/07/14.eng) Google Scholar
  166. Spurlock G, Heils A, Holmans P, Williams J, D’Souza UM, Cardno A et al (1998) A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol Psychiatry 3(1):42–49 (PubMed PMID: 9491812, Epub 1998/03/10.eng) Google Scholar
  167. Sukoff Rizzo SJ, Neal SJ, Hughes ZA, Beyna M, Rosenzweig-Lipson S, Moss SJ et al (2012) Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes. Transl Psychiatry 2:e199 (PubMed PMID: 23212583, Pubmed Central PMCID: PMC3565187, Epub 2012/12/06.eng) Google Scholar
  168. Suzuki Y, Sawamura K, Someya T (2004) The effects of a 5-hydroxytryptamine 1A receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacogenom J 4(4):283–286 (PubMed PMID: 15148501) Google Scholar
  169. Szegedi A, Rujescu D, Tadic A, Muller MJ, Kohnen R, Stassen HH et al (2005) The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenom J 5(1):49–53 (PubMed PMID: 15520843) Google Scholar
  170. Tadic A, Muller MJ, Rujescu D, Kohnen R, Stassen HH, Dahmen N et al (2007) The MAOA T941G polymorphism and short-term treatment response to mirtazapine and paroxetine in major depression. Am J Med Genet Part B Neuropsychiatr Genet 144B(3):325–331 (PubMed PMID: 17192957, Epub 2006/12/29.eng) Google Scholar
  171. Tsai SJ, Hong CJ, Chen TJ, Yu YW (2007) Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am J Med Genet B Neuropsychiatr Genet 144(8):1097–1098 (PubMed PMID: 17721930, Epub 2007/08/28.eng) Google Scholar
  172. Udina M, Moreno-Espana J, Navines R, Gimenez D, Langohr K, Gratacos M et al (2013) Serotonin and interleukin-6: the role of genetic polymorphisms in IFN-induced neuropsychiatric symptoms. Psychoneuroendocrinology 38(9):1803–1813 (PubMed PMID: 23571152, Epub 2013/04/11.eng) Google Scholar
  173. Uher R, Huezo-Diaz P, Perroud N, Smith R, Rietschel M, Mors O et al (2009) Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenom J 9(4):225–233 (PubMed PMID: 19365399, Epub 2009/04/15.eng) Google Scholar
  174. Uher R, Perroud N, Ng MY, Hauser J, Henigsberg N, Maier W et al (2010) Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry 167(5):555–564 (PubMed PMID: 20360315, Epub 2010/04/03.eng) Google Scholar
  175. Uher R, Tansey KE, Dew T, Maier W, Mors O, Hauser J et al (2014) An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am J Psychiatry 171(12):1278–1286 (PubMed PMID: 25017001) Google Scholar
  176. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M et al (2008) Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57(2):203–209 (PubMed PMID: 18215618, Epub 2008/01/25.eng) Google Scholar
  177. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S et al (2006) Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 59(8):681–688 (PubMed PMID: 16580345) Google Scholar
  178. Villafuerte SM, Vallabhaneni K, Sliwerska E, McMahon FJ, Young EA, Burmeister M (2009) SSRI response in depression may be influenced by SNPs in HTR1B and HTR1A. Psychiatr Genet 19(6):281–291 (PubMed PMID: 19829169, Pubmed Central PMCID: PMC2783179, Epub 2009/10/16.eng) Google Scholar
  179. Wang HC, Yeh TL, Chang HH, Gean PW, Chi MH, Yang YK et al (2011) TPH1 is associated with major depressive disorder but not with SSRI/SNRI response in Taiwanese patients. Psychopharmacology 213(4):773–779 (PubMed PMID: 20945066, Epub 2010/10/15.eng) Google Scholar
  180. Wang Y, Liu X, Yu Y, Han Y, Wei J, Collier D et al (2012) The role of single nucleotide polymorphism of D2 dopamine receptor gene on major depressive disorder and response to antidepressant treatment. Psychiatry Res 200(2–3):1047–1050 (PubMed PMID: 22796099, Epub 2012/07/17.eng) Google Scholar
  181. Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P (2011) Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci USA 108(22):9262–9267 (PubMed PMID: 21518864, Pubmed Central PMCID: 3107316) Google Scholar
  182. Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK et al (2015) Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev 58:63–78 (PubMed PMID: 26271720, Pubmed Central PMCID: PMC4828243, Epub 2015/08/15.eng) Google Scholar
  183. Yoshida K, Takahashi H, Higuchi H, Kamata M, Ito K, Sato K et al (2004) Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry 161(9):1575–1580 (PubMed PMID: 15337646) Google Scholar
  184. Yoshida K, Higuchi H, Takahashi H, Kamata M, Sato K, Inoue K et al (2008) Influence of the tyrosine hydroxylase val81met polymorphism and catechol-O-methyltransferase val158met polymorphism on the antidepressant effect of milnacipran. Hum Psychopharmacol 23(2):121–128 (PubMed PMID: 18023073, Epub 2007/11/21.eng) Google Scholar
  185. Yu YW, Tsai SJ, Liou YJ, Hong CJ, Chen TJ (2006) Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol 16(7):498–503 (PubMed PMID: 16458487) Google Scholar
  186. Zakharyan R, Petrek M, Arakelyan A, Mrazek F, Atshemyan S, Boyajyan A (2012) Interleukin-6 promoter polymorphism and plasma levels in patients with schizophrenia. Tissue Antigens 80(2):136–142 (PubMed PMID: 22571276, Epub 2012/05/11.eng) Google Scholar
  187. Zhao X, Huang Y, Li J, Ma H, Jin Q, Wang Y et al (2012) Association between the 5-HT1A receptor gene polymorphism (rs6295) and antidepressants: a meta-analysis. Int Clin Psychopharmacol 27(6):314–320 (PubMed PMID: 22890315, Epub 2012/08/15.eng) Google Scholar
  188. Zobel AW, Nickel T, Sonntag A, Uhr M, Holsboer F, Ising M (2001) Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. a prospective study. J Psychiatr Res 35(2):83–94 (PubMed PMID: 11377437) Google Scholar
  189. Zorrilla EP, Heilig M, de Wit H, Shaham Y (2013) Behavioral, biological, and chemical perspectives on targeting CRF(1) receptor antagonists to treat alcoholism. Drug Alcohol Depend 128(3):175–186 (PubMed PMID: 23294766, Pubmed Central PMCID: PMC3596012, Epub 2013/01/09.eng) Google Scholar
  190. Zou YF, Wang Y, Liu P, Feng XL, Wang BY, Zang TH et al (2010) Association of brain-derived neurotrophic factor genetic Val66Met polymorphism with severity of depression, efficacy of fluoxetine and its side effects in Chinese major depressive patients. Neuropsychobiology 61(2):71–78 (PubMed PMID: 20016225, Epub 2009/12/18.eng) Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital of WuerzburgWürzburgGermany
  2. 2.Comprehensive Heart Failure CenterUniversity Hospital of WuerzburgWürzburgGermany

Personalised recommendations